A Unified Welfare Analysis of Government Policies

Nathaniel Hendren and Ben Sprung-Keyser

Harvard

December, 2019

A Unified Welfare Analysis of Government Policies

- What government policies do the most to improve social welfare?
 - Should we spend more (or less) on health insurance?
 - Should we raise top marginal income tax rates?
 - Should we invest more in children? At what age?
- There is existing research analyzing the effect of many of these policy changes
 - But little work quantifying the broad trade-offs across policy categories
 - Often different welfare methods used (CBA, MCPF, cost per life saved...)
- This paper: Conducts a unified welfare analysis of historical policy changes in the US over the past half century
 - Study 133 policy changes spanning four major categories: Social insurance, education and job training, taxes and cash transfers, and in-kind transfers

Measuring the Marginal Value of Public Funds

- For each policy change, we draw upon estimates in existing literature to measure:
 - The benefits to its recipients (measured as willingness to pay)
 - The net cost to the government (inclusive of fiscal externalities)
 - We take the ratio of benefits to net cost to form its Marginal Value of Public Funds:

$$MVPF = \frac{Beneficiaries'\ Willingness\ to\ Pay}{Net\ Government\ Cost}$$

- Differs from traditional benefit/cost ratios by focusing on incidence of costs on government
- Comparisons of MVPFs yield social welfare impacts
 - Suppose Policy 1 has $MVPF_1 = 1$ and Policy 2 has $MVPF_2 = 2$
 - More spending on policy 2 financed by less on 1 increases social welfare iff prefer to take \$1 from Policy 1 beneficiaries to give \$2 to policy 2 beneficiaries
 - MVPF quantifies the tradeoffs across policies
 - Infinite MVPFs correspond to policies that pay for themselves (WTP > 0 and Cost < 0)

Data and Approach

- Construct comprehensive sample of policy changes (more formally, "identification conditions") from survey and review articles in the four domains
- For each policy change, translate estimated impacts into the MVPF
- Assess robustness to range of assumptions
 - Program Parameters (discount rate, tax rate, etc.)
 - Forecasting/Extrapolation of Observed Effects
 - Validity of Empirical Designs (RCTs/RDs vs. Diff-in-Diff; Peer Reviewed vs. not; etc.)
 - Publication Bias (Andrews and Kasy, 2018)
 - Missing Causal Estimates (e.g. restrict to subsets of policies with different sets of observed effects)
- Detailed appendices + posted .do files on GitHub for exploration

Results Roadmap

- Direct investments in low-income children have had the highest MVPFs
 - High MVPFs throughout childhood: K12, college and health, not just preschool
 - Many policies "pay for themselves" (e.g. 3 out of 4 child Medicaid expansions)
 - Lower MVPFs for policies targeting adults (MVPFs ranging from 0.5-2)
- Several exceptions:
 - Children: Large variation in estimates with some low MVPFs (e.g. SSI)
 - Adults: Policies with indirect impacts on children (e.g. Moving to Opportunity)
- Library of MVPFs provides tests of a range of theories (optimal taxation, in-kind vs cash transfers, optimal policy targeting, value of correcting market failures...)
- Lessons for future welfare analyses
 - Comparison to traditional Benefit-Cost analysis
 - Statistical decision theory to quantify value of future work reducing uncertainty

Outline

- (1) What We Do: Our Method and An Example
- 2 What We Find: MVPF Estimates and Robustness
- 3 Relation to Previous Theory
- 4 Lessons for Future Welfare Analyses

Outline

- 1 What We Do: Our Method and An Example
 - Deriving the MVPF
 - Measuring the MVPF: An Education Example

General Welfare Framework

- Goal: Illustrate how the MVPF translates "reduced form" policy changes into precise statements about the social welfare impact of those policy changes
- Define social welfare:

$$W = \int \psi_i u_i$$

- $-u_i$ is individual i's utility function
 - Expected future discounted utility (e.g. $u_i = E[\sum_{t\geq 0} \beta^j v_{it}]$)
- $-\psi_i$ is i's Pareto weight
- Define $\eta_i = \psi_i \lambda_i$, where λ_i is the marginal utility of income
- Ratios $\frac{\eta_i}{\eta_j}$ correspond to "Okun's Bucket" (Okun, 1976)

Impact of Policy Change on Social Welfare

- Consider policy change dp (e.g. change in tax rate, educ. subsidy, etc.)
- First-order welfare impact:

$$\frac{dW}{dp} = \int_{i} \psi_{i} \frac{du_{i}}{dp} = \bar{\eta}_{p} \int_{i} WTP_{i}$$

- $\int_i WTP_i = \int_i \frac{\frac{du_i}{dp}}{\lambda_i}$ is the sum of WTP by beneficiaries out of their own income for the policy
- $\bar{\eta}_p = \int \eta_i \frac{WTP_i}{\int_i WTP_i}$ is incidence-weighted average social marginal utility of income

Compare Policies by Normalizing by Cost

- Most policies (i.e. reduced-form variations, dp) are not budget neutral
 - Let R denote govt budget and $G = \frac{dR}{dp}$ denote impact on govt budget that must be financed
 - G includes any fiscal externalities from behavioral responses to the policy
- The Marginal Value of Public Funds (MVPF) of policy p is given by:

$$MVPF_p = \frac{\int WTP_i}{G} = \frac{Willingness\ to\ pay}{Net\ Cost}$$

- \$1 of govt spending on the policy delivers \$MVPF benefits to the beneficiaries
 of the policy [Mayshar (1990), Slemrod and Yitzhaki (1996, 2001), Kleven and Kreiner (2006), Hendren (2017)]
 - Delivers $\bar{\eta}_p MVPF_p$ in social welfare

MVPF Facilitates Construction of Policies that Increase Welfare

- Take two (non-budget neutral) policies: policy 1 and policy 2
- Consider budget neutral policy, dp: increase spending on policy 1 financed from less spending (greater revenue) from policy 2
- To first order, combined policy increases social welfare $(\frac{dW}{dp} > 0)$ **if only if**

$$\bar{\eta}_1 MVPF_1 > \bar{\eta}_2 MVPF_2$$

- MVPFs characterize price of delivering welfare to the beneficiaries through the policy
 - Motivates comparing policies with similar distributional incidence ($ar{\eta}_1 pprox ar{\eta}_2$)
 - Laffer effect occurs when WTP > 0 and $Net\ Cost < 0 \rightarrow MVPF = \infty$
- MVPFs (+ social preferences) are the building blocks for measuring the first-order welfare impact of policy changes

Outline

- 1) What We Do: Our Method and An Example
 - Deriving the MVPF
 - Measuring the MVPF: An Education Example

Admission to Florida International University

 Florida International University (FIU) had a minimum GPA threshold for admission that created a fuzzy discontinuity

 Zimmerman (2014) utilizes this discontinuity to examine the impact of FIU admission on earnings for 14 years after admission.

Impact of College Attendance on Earnings: Zimmerman (2014)

FIG. 8.—Quarterly earnings by distance from GPA cutoff. Lines are fitted values based on the main specification. Dots, shown every .05 grade points, are rolling averages of values within .05 grade points on either side that have the same value of the threshold-crossing dummy.

Forecasting Future Earnings using the Cross-sectional Age Distribution Mean 2015 ACS Earnings by Age with 0.5% Growth

Forecasting Future Earnings using the Cross-sectional Age Distribution Control Group Earnings

Forecasting Future Earnings using the Cross-sectional Age Distribution Control Group Forecast

Forecasting Future Earnings using the Cross-sectional Age Distribution Control Group Earnings + Treatment Effect

Forecasting Future Earnings using the Cross-sectional Age Distribution Treatment Group Forecast

Forecasting Future Tax/Transfer Revenue

Original \$11.4K cost returns \$24.4K to the government over the person's lifetime

 $MVPF = \infty$

Willingness to Pay for Admission into Florida International University Baseline WTP

Willingness to Pay for Admission into Florida International University Baseline WTP

Willingness to Pay for Admission into Florida International University Baseline WTP

Outline

- 1 What We Do: Our Method and An Example
- 2 What We Find: MVPF Estimates and Robustness

- **3** Relation to Previous Theory
- 4 Lessons for Future Welfare Analyses

Direct Investments in Children Historically Had Highest MVPFs

Direct Investments in Children Historically Had Highest MVPFs

With 95% Confidence Intervals Computed via Modified Bootstrap

Cash Transfers

Child Education

College Adult

Direct Investments in Children Historically Had Highest MVPFsCategory Averages

Net Costs to Government per \$1 of Initial Expenditure Category Averages

Net Costs to Government per \$1 of Initial Expenditure Category Averages

Not All Child-Targeted Policies Have High MVPFs

Infinite MVPF for 1981 Top Tax Rate...

Infinite MVPF for 1981 Top Tax Rate...

Policies with Spillovers onto Children Have High MVPFs (e.g. MTO)

MVPF Robustness to Alternative Discount Rates

3% discount rate

MVPF Robustness to Alternative Discount Rates

7% discount rate

MVPF Robustness to Alternative Tax and Transfer Rates

10% Tax and Transfer Rate

MVPF Robustness to Alternative Tax and Transfer Rates

30% Tax and Transfer Rate

MVPFs for Restricted Sample

Excluding College-Based Extrapolations

MVPF Robustness to WTP

Conservative Willingness to Pay

MVPF Robustness to Forecasting

Assuming Fixed Income over Life Cycle (No Income Growth, Restricted Sample)

MVPF Robustness to Sample/Specification Quality

Peer-Reviewed Studies

MVPF Robustness to Sample/Specification Quality

RCTs, RDs, and Lotteries

MVPF by Year of Policy

MVPF by Year of Policy

Averages by Decade

Publication Bias

- Our estimates are constrained by the existence of previous literature
- Would Perry Preschool have been published if the effects were an (imprecise) zero?
- Andrews and Kasy (2018) provide a method to test for and correct publication bias
- Child Policies: 3-4 times more likely to be published if they find a repayment effect
- Adult Policies: up to 12 times more likely to be published if they find a distortionary effect

MVPF Robustness to Publication Bias

Adjusting for Observed Publication Bias

MVPF Robustness to Publication Bias

Adjusting for 35X Bias in Experimental Economics Studies [Camerer (2016)]

Outline

- 1) What We Do: Our Method and An Example
- 2 What We Find: MVPF Estimates and Robustness

- (3) Relation to Previous Theory
- 4 Lessons for Future Welfare Analyses

Quantifying the Tradeoffs of Redistribution through the Tax Schedule

(Mirrlees 1976)

In-Kind versus Cash Transfers ("Atkinson-Stiglitz" Theorem)

"Tagging" Based on Age in MTO

Efficient Redistribution through Investments in Low-Income Children

Outline

- 1) What We Do: Our Method and An Example
- 2 What We Find: MVPF Estimates and Robustness
- **3** Relation to Previous Theory
- 4 Lessons for Future Welfare Analyses

Lesson #1: MVPF vs Benefit/Cost Ratio [Heckman et al., 2012; Zimmerman 2014]

Benefit Cost Ratio by Age of Beneficiaries

Lesson #1: MVPF vs Benefit/Cost Ratio [Heckman et al., 2012; Zimmerman 2014]

Tax Revenue Impacts Counted as Social Benefits, not Government Cost Reductions

Lesson #3: Use MVPF-Framework to Quantify Value of Future Research

- MVPF estimates contain considerable (model + sampling) uncertainty
- The MVPF is a shadow price → value to reducing uncertainty
- Should govt raise \$1 of revenue from known MVPF of 1 to spend on policy j?
- Can spend v_i to reduce sampling uncertainty before investing
 - E.g. reduce sampling uncertainty from PSID -> Admin data estimates of food stamp intro
- Solve for v_i that makes government indifferent to learning
 - E.g. food stamps: government WTP \$0.24 for every \$1 spent on SNAP to learn census vs
 PSID estimate before deciding to spend

Conclusion

- Direct investment in low-income children have had highest, often infinite, MVPFs
 - Policies often pay for themselves
- Lower MVPFs for policies targeting adults
 - Costly to redistribute from rich to poor adults
 - Investment in children has historically been efficient method of redistribution
- Lessons for future welfare analyses
 - Incidence on the government matters (difference relative to CBA)
 - Design RCTs where WTP can be measured, not just costs
 - High value to identifying long-run earnings effects, especially child spillovers
- All code + data is available on github and at www.policyinsights.org

Results + Tutorial at www.policyinsights.org

Appendix

WTP over Program Cost

Baseline Specification

WTP over Program Cost

Lower Bound Specification

MVPF Robustness to Alternative Discount Rates

10% discount rate

Publication Bias

Table III: Publication Bias Estimation

	Children Estimates			Adult Estimates		
Z-Score	(1)	(2)	(3)	(4)	(5)	(6)
Z > 1.64	3.717	_		2.52	_	
	(2.46)			(1.32)		
Z < -1.64	1.154	-		7.90	-	
	(0.44)			(1.48)		
Z [1.64,1.96]			3.65			1.36
			(3.46)			(1.14)
Z [-1.96, -1.64]			1.02			4.19
			(0.57)			(0.81)
Z > 1.96	-	3.09	3.78	-	3.27	3.59
		(1.09)	(2.17)		(1.50)	(1.21)
Z < -1.96	-	1.21	1.24	-	10.39	11.52
		(0.50)	(0.62)		(2.53)	(2.43)
N	237	237	237	150	150	150

Notes: The numbers shown are the estimated probability of publication relative to an insignificant result. Standard errors in parentheses.

MVPF Robustness to Forecasting

No Projections for All Policies (Restricting to 5+ years Observed)

MVPF Robustness to Forecasting

Observed Impacts on Children

MVPF Estimates

With and Without Spillovers on Children

EITC OBRA 1993 MVPF Estimates

Incorporating Different Estimates of Spillovers on Children

BCR by Age

Lesson #3: Value of Removing Sampling Uncertainty

Willingness to Pay for Admission into Florida International University Conservative WTP

Willingness to Pay for Admission into Florida International University Baseline WTP

In the 1980s, states expanded Medicaid to pregnant women and children < 1</p>

 A series of papers, beginning with Currie and Gruber (1996), use state variation over time in these expansions

We combine these impacts across papers to form the implied MVPF

Begin with government costs

Medicaid Expansion to Pregnant Women and Infants: Costs Recouped by Age 34

