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I Introduction

Social scientists increasingly use confidential data held by government agencies or private firms to

publish statistics based on small samples, from descriptive statistics on income distributions and

health expenditures in small areas (e.g., Cooper et al. 2015, Chetty et al. 2018) to estimates of the

causal effects of specific schools and hospitals (e.g., Angrist et al. 2013, Hull 2018). Such statistics

allow researchers and policymakers to answer important questions. But releasing such statistics

also raises concerns about privacy loss – the disclosure of information about a specific individual –

which can undermine public trust and is typically prohibited by law in government agencies and

user agreements in the private sector.

In this paper, we develop a simple method to reduce privacy loss when disclosing statistics such

as OLS regression estimates based on small samples. We add noise to the statistic of interest that

is inversely proportional to the number of observations in the sample, choosing the amount of noise

that is added based on how much the statistic of interest changes when one includes or excludes

a single observation. Intuitively, our approach permits the release of statistics in arbitrarily small

samples by adding sufficient noise to the estimates to protect privacy. We discuss an application of

our noise-infusion method to releasing Census tract-level estimates of social mobility and present

a step-by-step guide and code for implementing the method in other settings.

Currently, the most widely applied approaches to limiting such disclosure risks in social science

are cell suppression (omitting data for small cells) and data swapping (switching individual values

across cells). These techniques are simple to understand and are practical in the sense that they

are almost universally applicable to any statistic of interest. Unfortunately, they remain prone to

divulging information about specific individuals (e.g., Abowd and Schmutte 2019). For example,

even when one suppresses cells with a count of fewer than say 100 individuals, one could in principle

recover a single individual’s income by releasing a mean over 150 individuals and a mean over 151

individuals and differencing the two statistics. Such concerns are not merely theoretical: one can

reconstruct individual data with surprising accuracy from tables released by the U.S. Census Bureau

that employed traditional disclosure avoidance methods (Garfinkel et al. 2018).

The recent literature on differential privacy, initiated in seminal work by Dwork (2006) and

Dwork et al. (2006), provides a path to solving this problem by developing metrics for the privacy

loss associated with the release of a statistic that can be held below a desired risk tolerance thresh-

old. This literature has developed straightforward methods to protect privacy for simple statistics
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such as means and counts by adding noise to the estimates (e.g., McSherry and Talwar 2007, Dwork

2006, Kasiviswanathan et al. 2011). However, methods to protect privacy when disclosing more

complex estimators – such as regression or quasi-experimental estimators – rely on either asymp-

totic results in large samples (e.g., Smith 2011, Kifer et al. 2012) or the use of robust statistics such

as median regression (Dwork and Lei 2009), limiting their application in social science.

Here, we build on ideas from the differential privacy literature to develop a method of reducing

the privacy loss from disclosing arbitrarily complex statistics in small samples. Our approach

combines some of the advantages of the differential privacy approach while retaining the practical

benefits of traditional approaches such as cell suppression. In particular, the differential privacy

literature generally focuses on developing mechanisms that are “provably private” in the sense of

offering well-defined (probabilistic) guarantees about the risk of disclosing information about a

single individual. We pursue a less ambitious goal. Rather than attempting to develop a provably

private algorithm, we propose a method that outperforms existing methods of disclosure limitation

such as cell suppression both in terms of privacy loss and statistical bias.

For concreteness, we focus on the problem of releasing estimates from univariate ordinary least

squares (OLS) regressions estimated in small samples (e.g., small geographic units). We consider

the case where the dataset can be broken into many groups (“cells”) and one is interested in

releasing statistics for one or more of these cells. For example, we may be interested in disclosing

the predicted values from a regression of children’s income percentile ranks in adulthood on their

parents’ income ranks in each Census tract in the U.S. Following the differential privacy literature,

we add noise to each regression estimate that is proportional to the sensitivity of the estimate,

defined as the impact of changing a single observation on the statistic. Intuitively, if a statistic

is very sensitive to a single observation, one needs to add more noise to keep the likelihood of

disclosing a single person’s data below a given risk tolerance threshold.

The key technical challenge is determining the sensitivity of the regression estimates. The most

common approach in the differential privacy literature is to measure the global sensitivity of the

statistic by computing the maximum amount a regression estimate could change when a single

observation is added or removed for any possible realization of the data. The advantage of this

approach is that the actual data are not used to compute sensitivity, permitting formal guarantees

about the degree of privacy loss. The problem is that in practice, the global sensitivity of regression

estimates is infinite: one can always formulate a dataset (intuitively, with sufficiently little variance

in the independent variable) such that the addition of a single observation will change the estimate
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by an arbitrarily large amount. As a result, respecting global sensitivity effectively calls for adding

an infinite amount of noise and hence does not provide a path forward to disclose standard OLS

regression estimates.

At the other extreme, one can compute the local sensitivity of a regression statistic as the

maximum amount a regression estimate changes when a single observation is added or removed from

the actual data in a given sample. While this is a finite value, the problem with this approach is that

releasing the local sensitivity of statistics may itself release confidential information. Intuitively,

local sensitivity is itself a statistic computed in a small sample and thus reveals some information

about the underlying data.

Our approach to computing sensitivity is a hybrid that lies between local and global sensitivity.

We calculate local sensitivity in each cell (e.g., each Census tract) and then define the maximum

observed sensitivity (MOS) of the statistic as the maximum of the local sensitivities across all cells

(e.g. across all tracts in a given state), adjusting for differences in the number of observations across

cells.1 Drawing on results from the differential privacy literature, we show that by adding noise

proportional to the MOS, one can guarantee that the privacy loss from releasing the cell-specific

statistics (e.g., regression estimates) themselves falls below any desired exogenously specified risk

tolerance threshold ε. The only uncontrolled privacy risk comes from the release of the MOS

parameter (a single number), which is disclosed without noise and hence reveals information about

the underlying data that has unknown privacy risk. Importantly, however, we can compute the

MOS in a sufficiently large sample that the disclosure risk from releasing it is likely to be negligible.

For example, the Census Bureau’s Disclosure Review Board has adopted the interim policy of not

requiring additional noise infusion for statistics based on populations at least as large as the smallest

state, based on the rationale that the number of individuals in such groups is large enough that it

is unlikely one could identify a single person using typical statistics.2

We illustrate how the method can be implemented by discussing how we used it to produce

the Opportunity Atlas, which provides public estimates of children’s long-term outcomes by the

tract in which they grew up (Chetty et al. 2018). We reduced the sensitivity of the statistics we

released through procedures such as bounding variables and winsorization. We then chose the

1When one is interested in releasing an estimate for a single cell (e.g., a quasi-experimental estimate based on
policy changes in a single school), one can construct “placebo” estimates by pretending that similar changes occurred
in other cells (other schools) and then following the same approach to compute the MOS.

2Of course, this logic cannot be uniformly applied to all statistics; for instance, if one were to release the max-
imum income observed in a given state, one might be able to identify the person whose income is being reported.
Nevertheless, for typical statistics such as means or medians of bounded variables, there is a common intuition –
though no formal proof – that the privacy risks in large samples are generally small enough to be ignored.
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privacy threshold ε by following Abowd and Schmutte (2019) and weighing the privacy losses of

a higher ε against the social benefits, which we defined as providing more accurate information to

a family seeking to move to a higher-opportunity neighborhood. Ultimately, the noise we added

to the estimates to protect privacy was smaller than the sampling error inherent in the estimates

themselves and hence did not affect the precision of the statistics significantly.3 The tract-level

estimates released using this approach have been viewed by half-a-million users, are currently

being used to inform moving-to-opportunity housing voucher policies by housing authorities, and

have been used as inputs by other researchers in downstream analyses (e.g., Morris et al. 2018).

The Opportunity Atlas thus provides a large-scale, real-world demonstration that our approach

can be used to construct statistics from confidential data that provide useful information for social

science and policy applications while limiting privacy risk.

Our approach outperforms the most popular disclosure limitation protocol that social scientists

currently use (suppression of cells based on small counts) both in terms of reducing both privacy

loss and statistical bias.4 In terms of privacy loss, it is straightforward to show that cell suppression

has infinite (uncontrolled) privacy risk. As discussed above, even if one suppresses cells with counts

below some threshold, one can recover information about a single individual by releasing statistics

(e.g., means) from adjacent datasets that differ by a single observation.5 In contrast, our noise-

infusion approach would yield only probabilistic information about the additional observation, with

a probability that is controlled by the choice of the risk tolerance threshold ε. Our approach reduces

the dimensionality of the statistics that create uncontrolled privacy risks to a single number (the

MOS parameter) that can be estimated in large samples, thereby significantly reducing the scope

for privacy loss.

We demonstrate the benefits of our noise infusion approach in terms of statistical bias using

an example from the Opportunity Atlas. Using noise-infused tract-level data, Chetty et al. (2018)

show that black women who grow up in Census tracts with more single parents have significantly

higher teenage birth rates. If one were to instead conduct their analysis suppressing cells where

tracts where very few (less than 5) teenage births occur – a common approach to limit disclosure

risk for rare outcomes – this strong relationship would vanish and the correlation would be zero.

3Although the Census Bureau has permitted experimental approaches like the one used here and the one used in
OnTheMap to recommend privacy loss levels, the Data Stewardship Executive Policy Committee, which oversees the
Disclosure Review Board, controls privacy loss levels for production applications.

4We focus on comparisons to count-based suppression mechanisms, but similar points apply to data swapping as
well (Alexander et al. 2010, Abowd and Schmutte 2015).

5Of course it is theoretically possible to prevent such releases by tracking every release and the exact sample used
to generate it, but in practice this would be very difficult given the broad uses of many administrative data sets.
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This is because the suppression rule leads to non-random missing data by excluding cells with low

teenage birth rates (as pointed out more generally by Abowd and Schmutte (2015)). In short, count

suppression would have led Chetty et al. (2018) to miss the relationship between teenage birth rates

and single parent shares, illustrating how our algorithm outperforms existing approaches not just

in principle but in practical applications of current interest to social scientists.

The rest of this paper is organized as follows. The next section sets up the problem and defines

the key concepts. Section III describes our noise infusion method, both in general terms and in the

application to the Opportunity Atlas. Section IV shows how our noise infusion method outperforms

cell suppression methods. Section V concludes. A step-by-step guide to implementing the method

(along with illustrative Stata code) is provided in the Appendix.

II The Problem

Our goal is to disclose a statistic θ that is a scalar estimated using a small number of observations

in a confidential dataset while minimizing the risk of privacy loss. Although our approach can be

applied to any statistic, we focus for concreteness on the problem of releasing predicted values from

univariate regressions that are estimated in subgroups of the data, indexed by g:

yig = αg + βgxig + νig.

For example, Chetty et al. (2018) regress children’s income ranks in adulthood (y) on their parents’

income ranks (x) by Census tract g. They then seek to release the predicted values from these

regressions at the 25th percentile of the parent income distribution θg = αg + 0.25 × βg in their

Opportunity Atlas. Because each Census tract contains relatively few observations, releasing {θg}

raises concerns about preserving the privacy of the underlying individual data.

Noise Infusion. One intuitive way to reduce the risk of privacy loss is to add noise to the

estimates {θg}. An attractive feature of this approach is that the privacy loss from publishing

noise-infused statistics can be quantified and thereby controlled below desired levels (Dwork et al.

2006 and Wasserman and Zhou 2010). To see this, let θ̃g = θg+ωg denote the noise-infused statistic,

where ωg is an independently and identically distributed draw from distribution F (ω), so that the

conditional distribution of θ̃g given θg is F
(
θ̃g − θg

)
. Let Dg = {xig, yig} denote the empirically

observed data in cell g and Dg denote the set of theoretically possible datasets for tract g. The

privacy loss from disclosing θ̃g can be measured using the log likelihood ratio

log
f(θ̃g − θg(D1

g))

f(θ̃g − θg(D2
g))

, (1)
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where D1
g , D

2
g ∈ Dg are two adjacent datasets (i.e., differ by only one observation) and f() denotes

the density of F (ω). Intuitively, this ratio measures the likelihood that the published statistic θ̃g

stems from underlying dataset D1
g , relative to D2

g ; from a Bayesian perspective, the larger this ratio

(in absolute value), the more one could update one’s priors between D1
g and D2

g given the release

of statistic θ̃g.

When no noise is infused (i.e., V ar (ωg) = 0), this likelihood ratio will be infinite (except in the

knife-edge case where two datasets produce exactly the same value of θg), as one could perfectly

distinguish between any two datasets D1
g and D2

g that do not happen to produce exactly the same

value of. As the noise variance increases, the likelihood ratio falls, and it becomes more difficult to

determine whether the published statistic results from one dataset or another.

Differential Privacy. Modern privacy mechanisms limit privacy loss by placing an upper bound

on the likelihood ratio in (1), effectively providing a “worst case” guarantee on the degree of privacy

loss. In the terminology introduced by Dwork (2006) and Dwork et al. (2006), a privacy algorithm

is “ε-differentially private” if

log
f(θ̃g − θg(D1

g))

f(θ̃g − θg(D2
g))

< ε ∀D1
g , D

2
g ∈ Dg , ∀ θ̃g ∈ R. (2)

The parameter ε can be interpreted as the maximum risk one is willing to tolerate when releasing

the statistic of interest. If one uses a mean-zero Laplace distribution for noise ωg (with density

l (ω; 0, b) = 1
2b exp

[
− |ω|b

]
), the log-likelihood ratio is

log
f(θ̃g − θg(D1

g))

f(θ̃g − θg(D2
g))

=

∣∣∣θ̃g − θg(D2
g)
∣∣∣− ∣∣∣θ̃g − θg(D1

g)
∣∣∣

b
.

It follows that one can achieve the desired bound from (2) by setting the Laplace scale parameter

b =
∆θg
ε , where

∆θg = max
D1

g ,D
2
g∈Dg

∣∣θg (D1
g

)
− θg

(
D2
g

)∣∣
is the “sensitivity” of the statistic θg (Dwork et al. 2006). Sensitivity measures the maximum

amount that the statistic can change between any two adjacent datasets. When sensitivity is higher

– that is when changing a single observation changes θg more – one must add more noise to prevent

people from distinguishing one dataset from another. To see the intuition, consider releasing the

mean wealth for a small group of households. If a very wealthy individual is potentially in that

small group, the inclusion or exclusion of her data could change the reported mean substantially.

One must therefore infuse a large amount of noise to protect her privacy when releasing statistics
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on mean wealth. In contrast, if one seeks to release the mean education in a group, there is less

scope for outliers and hence the inclusion or exclusion of any one individual is unlikely to have a

significant impact (i.e., sensitivity is low). In this case, privacy loss can be limited by adding a

modest amount of noise.

If sensitivity ∆θg were publicly known, one could obtain differentially private statistics that

satisfy any exogenously specified privacy loss threshold ε simply by adding noise

ωg ∼ L
(

0,
∆θg
ε

)
. (3)

to the statistics one seeks to release.6 In practice, ∆θg is not known ex-ante, as it depends on

the particular values in the dataset Dg; hence, the key remaining question is how it should be

calculated.

Global Sensitivity. The standard approach to measuring ∆θg in the differential privacy literature

is to calculate global sensitivity, the maximum amount a statistic can change under any theoretically

possible configuration of the data. For instance, consider releasing the mean of N observations

that are bounded between 0 and 1. The most that this statistic can change by changing a single

observation in the data is by replacing a value of 0 with a value of 1 (or the reverse), thereby

changing the mean by 1
N . Hence, global sensitivity is 1

N in this case. Since this computation of

global sensitivity does not rely on the actual data, it can be released publicly along with the statistic

θ̃g without any further privacy loss, yielding a fully differentially private disclosure mechanism.

Researchers have applied this global-sensitivity approach to release simple statistics such as counts

and means (Dwork et al. 2006); indeed, the privacy protection plan for tabular data publications

from the 2020 Decennial Census uses such methods (U.S. Census Bureau 2018).

Unfortunately, global sensitivity is typically infinite for OLS regression estimates and many

other statistics of interest to social scientists. To see this in our setting, consider the limiting case

where V ar(xig) approaches 0 (e.g., all parents in a given cell have virtually the same income). In this

case, the slope of the regression line (and therefore the predicted value θg) grows arbitrarily large.

Adding a single value (x, y) to the dataset that is sufficiently far from the estimated regression line

could therefore have an arbitrarily large effect on the statistic of interest, as illustrated in Appendix

Figure 1. Thus, global sensitivity is infinite, implying that adding any finite amount of noise will

not meet the differential privacy guarantee in (2).

6As in much of the differential privacy literature, we take the privacy loss threshold ε as given. One way to choose
ε is to weigh the tradeoffs between the social value of a more accurate statistic and the costs of potential privacy loss
(Abowd and Schmutte 2019).
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In summary, standard methods of computing global sensitivity in the differential privacy litera-

ture do not provide a straightforward way to disclose many statistics of interest to social scientists.

We propose an alternative approach to computing sensitivity in the next section.

III Maximum Observed Sensitivity Algorithm

The problem with global sensitivity is that empirically unrealistic but theoretically feasible data

configurations drive sensitivity to infinity. In this section, we propose an algorithm that instead

focuses on values of sensitivity that are empirically relevant. Our approach is analogous to an

Empirical Bayes estimator, in that we use the data itself to construct a prior on possible levels of

sensitivity rather than using an uninformed prior that permits all theoretically possible values (as

in the calculation of global sensitivity).

Local Sensitivity. The starting point for our algorithm is measuring local sensitivity, defined

as the largest amount that adding or removing a single point can affect the statistic θg given the

data that is actually observed in cell g. Figure 1 illustrates the computation of local sensitivity

by considering a hypothetical Census tract with twenty observations of parent and child income

percentiles. Based on these observations, the predicted value of children’s income (y) at the 25th

percentile of the parental income distribution (x = 0.25) is θg = 0.212.

To compute local sensitivity, we recalculate this predicted value, adding new points one by one

to see how much they affect the estimate of θg. In the example in Figure 1, adding a point at

(0, 1) – that is, an outlier where a child from a very low income family has a very high income in

adulthood – has the biggest impact on the predicted value.7 If that point is added, the original

regression line flattens to become the dashed line, and the predicted value at the 25th percentile

rises to θg = 0.349. The local sensitivity in this example is therefore LSθ,g = 0.349−0.212 = 0.137.

Adding noise proportional to this level of sensitivity would, per equation (2), guarantee the

desired upper bound on privacy loss from the public release of the statistic θ̃g. However, in order

for users of this statistic to know the variance of the noise V ar(ω) that was added – which is

necessary for valid downstream inference – one must also release the value of local sensitivity LSθ,g,

which discloses additional information and thereby can create a privacy risk. Intuitively, LSθ,g is

itself a statistic that is estimated from the data Dg, just like θ̃g, and so it may reveal something

7Formally, measuring local sensitivity requires consideration of three sets of cases – adding a point, removing a
point, or changing a point – and finding the case that produces the largest change in θg. In the example in Figure
1 and in most practical applications with well-behaved distributions, adding a point in the corner of the dataspace
typically produces the largest change in θg and thereby pins down sensitivity. Hence, the computation of local
sensitivity can generally be simplified using a grid search in which one adds points to the corners of the dataspace.
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about the underlying individual data. For instance, if sensitivity is very large, that may reveal

that the data in cell g are tightly clustered around the regression line (as in the example in Figure

1). Hence, measuring sensitivity locally in each cell does not directly provide a feasible path to

disclosing the statistics of interest while controlling privacy risk.

Maximum Observed Sensitivity. To reduce the information loss associated with disclosing lo-

cal sensitivity in each cell, we measure sensitivity based on the largest local sensitivity across

all cells. If all cells have the same number of observations Ng, we simply define sensitivity as

∆θg = maxg[LSθ,g]. In most empirical applications, however, cells differ in size. Since smaller cells

typically have higher sensitivity, defining ∆θg = maxg[LSθ,g] yields too conservative a bound on

sensitivity. Figure 2 illustrates this point by presenting a scatter plot of local sensitivity LSθ,g,

calculated as in Figure 1, vs. Ng across cells (using log scales). If we were to simply define

∆θg = maxg[LSθ,g], sensitivity would be pinned down entirely by the smallest cells and would far

exceed the actual local sensitivity of the estimates in larger cells.

To achieve a tighter bound, we define an upper envelope to the set of points in Figure 2, which

we term the maximum observed sensitivity envelope, as

MOSE(Ng) =
χ

Ng
,

where χ = maxg [Ng × LSθ,g] is a scalar pinned down by the local sensitivity in one cell. The

MOSE, illustrated by the solid line in Figure 2, is linear because both axes in the figure use log

scales. Importantly, the MOSE weakly exceeds local sensitivity LSθ,g in all cells by construction,

as shown in the Figure 2, but falls as Ng rises.8 Hence, by adding noise proportional to sensitivity

∆θg = χ
Ng

in cell g, we can achieve the privacy guarantee in (2) when releasing
{
θ̃g

}
.

Our MOS method is still not differentially private because the scaling parameter χ is released

publicly without noise, which discloses information that may not satisfy the guarantee in (2).

However, the only potential uncontrolled privacy risk arises from the release of the single number

χ; the privacy loss from releasing the cell-specific statistics
{
θ̃g

}
themselves is guaranteed to be

below ε. Moreover, we can take steps to reduce (though not formally bound) the privacy risk

from releasing χ by computing it in a sufficiently large sample (e.g., across all tracts in a state).

For example, the Census Bureau’s Disclosure Review Board has adopted the interim policy of not

8One could potentially achieve even tighter bounds using other functional forms rather than the 1
Ng

scaling we

use to define the upper envelope. In practice, the 1
Ng

functional form yields a tight envelope (as illustrated in Figure

2) because the sensitivity of many common statistics (e.g., means, variances, and covariances) decays at rate 1
Ng

.

However, sensitivities for other statistics decay at other rates (e.g., the decay rate for standard deviations is 1√
Ng

);

users may wish to choose an appropriately scaled envelope to optimize the method for their setting.
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requiring additional noise infusion for statistics based on populations at least as large as the smallest

state, because the number of individuals in such groups is large enough that it is unlikely one could

identify a single person using typical statistics.

Our method can be summarized as follows.

Maximum Observed Sensitivity (MOS) Disclosure Algorithm

To publish a statistic θg estimated using confidential data given a privacy risk threshold ε, release
θ̃g = θg + ωg, where the noise

ωg ∼ L(0,
χ

εNg
)

follows a LaPlace distribution, χ = maxg [Ng × LSθ,g] is the MOS parameter, and LSθ,g is local
sensitivity, the maximum amount the statistic changes by adding or removing one observation
in cell g.

See the Appendix for a step-by-step guide to implementing this method (accompanied by illus-

trative Stata code). Cell-specific counts can be released as Ñg = Ng + νg, where υg ∼ L(0, 1
ε ). The

release of the counts in addition to the point estimates effectively doubles the privacy loss, making

the algorithm 2ε-differentially private (aside from the release of the MOS parameter χ). Standard

errors in each cell can be released using analogous methods; see the Appendix for details. Releas-

ing standard errors in addition to the point estimates and counts further increases the privacy risk

threshold to 3ε.

Application: Opportunity Atlas. To further facilitate implementation, we discuss how we ap-

plied this method to release the Opportunity Atlas, which provides publicly available estimates of

children’s outcomes in adulthood by parental income, race, gender, and the tract in which they

grew up (see Chetty et al. (2018) for details). This application illustrates how estimators can be

optimized to minimize privacy loss (and hence the amount of noise that must be added to protect

privacy) and maximize their utility in practical applications.

First, we worked only with bounded variables and used statistical transformations that limit

the influence of outliers. For instance, rather than attempting to report estimates of mean income

measured in dollars, we converted both children’s and parents’ incomes into percentile ranks.

Second, we winsorized both parent and child income ranks within each tract at the 5th and

95th percentiles by replacing all observations lying outside those quantiles in the distribution with

the values of the cutoffs. In small tracts, we always replaced at least one high and low point with

the next most extreme values. We found that winsorization substantially reduced the MOSE (by
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reducing the influence of outliers on each ∆θg), and thereby allowed us to release more accurate

estimates at a given level of privacy loss.9

Third, we entirely omitted very small cells with fewer than 20 children to comply with other

regulations governing the use of the data and because the estimates from these cells were too noisy

to be useful. More generally, excluding very small cells can be useful to stabilize the estimates and

reduce the risk of extremely high values of sensitivity ∆θg that may in turn end up affecting the

maximum observed sensitivity calculation. Note however that such censoring, if based on the true

value of Ng, can introduce additional privacy risk by implicitly disclosing additional information.

If regulations permit censoring instead on the released statistic Ñg, there would be no additional

privacy loss. More generally, any such pre-processing of the data based on non-public information

potentially introduces additional privacy loss, and so such adjustments should ideally be made on

the basis of publicly available information.

Fourth, we estimated the scaling parameter χ separately by state-gender-race groups, a level

of aggregation that our data provider (the Census Bureau) determined had negligible privacy risks

in our application. We chose the privacy parameter ε by weighing the privacy losses against the

potential social benefits of the statistics, as in Abowd and Schmutte (2019). Motivated by the real-

world application of these data to help households with housing vouchers find higher-opportunity

neighborhoods in which to live (Seattle Housing Authority 2017), we measured the social benefits of

accuracy as the potential error rates faced by a housing authority wishing to identify the best and

worst tracts in a given county for a given outcome. Specifically, we calculated the probability that

tracts which appear in the top or bottom tail of the distribution of public (noise-infused) estimates

in a given county are actually in the true top or bottom tail in the confidential data for different

values of ε. After plotting these error rates vs. ε and consulting with the Census Bureau, we set

ε = 8 as a value that preserved sufficient accuracy for this application while injecting adequate

noise to provide meaningful privacy protection.

Finally, we used a Normal distribution for the noise ωg instead of a Laplace distribution because

we expected the statistics we released to be used as an input in many downstream analyses (e.g.,

Morris et al. 2018). Normally distributed noise is convenient for downstream statistical inference,

such as the construction of confidence intervals or Bayesian shrinkage estimators.

9One must account for winsorization (and any other features of the estimation process) in the calculation of local
sensitivity, in order to estimate the sensitivity of the composed function including both the winsorization and the
estimation. That is, one must add an additional point to the pre-winsorized data and then winsorize before running
the regression of interest.
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IV Comparison to Current Methods of Disclosure Limitation

In this section, we compare the properties of our noise infusion approach to existing methods of

disclosure limitation. In particular, we contrast our method with count-based cell suppression –

the leading technique used to limit disclosure risk – on three dimensions: privacy loss, statistical

bias, and statistical precision.

Privacy Loss. Like most noise-infusion approaches, our method is likely to reduce the risk of

privacy loss substantially relative to count-based cell suppression. This is because even if one sup-

presses cells with counts below some threshold, one can recover information about a single individual

by releasing statistics (e.g., sample means) from adjacent datasets that differ by a single observa-

tion. Hence, statistics released after cell suppression still effectively have infinite (uncontrolled)

privacy risk ε. In contrast, our maximum observed sensitivity approach reduces the dimensionality

of the statistics that create uncontrolled privacy risks to one number (χ). Moreover, that number

can typically be estimated in a sufficiently large sample that its release could reasonably be viewed

as posing negligible privacy risk.

Statistical Bias. Our method also offers significant advantages in downstream statistical infer-

ence. Because we infuse random noise using parameters that are publicly known, one can obtain

unbiased estimates of any parameter of interest using standard techniques. In contrast, count-based

suppression can create bias in ways that cannot be easily identified or corrected ex-post.

To illustrate this point, we examine how results reported by Chetty et al. (2018) in their analysis

of the Opportunity Atlas tract-level data would have changed had they used cell suppression. In

particular, the authors show that black women who grow up in Census tracts with more single

parents have significantly higher teenage birth rates, even among tracts with low poverty rates.

Figure 3a shows a version of this finding by presenting a binned scatter plot of teenage birth rates

for black women with parents at the 25th percentile vs. the share of single-parent families in the

tracts in which they grew up, restricting the sample to low-poverty Census tracts (below 7%).

There is a clear positive relationship between the two variables: an OLS regression implies that

a 1 percentage point increase in single parent shares is associated with a 0.136 percentage point

increase in teenage birth rates for black women growing up in low-income families in low-poverty

areas. The OLS regression coefficient provides an unbiased estimate of this statistic despite the
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addition of noise to the tract-level estimates because the noise simply enters the error term and is

orthogonal to the independent variable by construction.10

We now examine how this result would have changed with cell suppression. When studying

binary outcomes such as teenage birth, a common practice in the cell suppression approach is to

omit data in tracts where very few (e.g., fewer than 5) teenage births occur (Washington State

Department of Health 2018). (Current practice typically does not suppress a count of 0.) We

mimic this rule in the Opportunity Atlas data by omitting tracts where black women raised in

low-income families have between 1 and 4 teenage births (inclusive).11

Figure 3b replicates Figure 3a in the sample where tracts with 1-4 teenage births are suppressed.

The strong positive correlation in Figure 3a disappears, with a slope that is now not statistically

distinguishable from 0. The reason is that count-based suppression induces measurement error

that is correlated with single parent shares through two sources. First, suppressing cells with

few teenage births mechanically omits tracts with low teenage birth rates (Appendix Figure 2a),

which are concentrated in areas with few single parents. Second, black women who grow up in

areas with a smaller black population tend to have fewer teenage births (Appendix Figure 2b);

tracts with a small black population in turn are more likely to be suppressed and also tend to be

areas with few single parents. Identifying and correcting for these biases would be very difficult

if one only had access to the post-suppression data. In short, one would likely have missed the

association between teenage birth rates and single parent shares in low-poverty areas had Chetty

et al. (2018) released data that followed standard cell-suppression techniques – illustrating that our

noise infusion approach has significant advantages in terms of statistical bias not only in theory

but in practice.

Statistical Precision. The key drawback of adding noise – which is typically the primary concern

of most researchers – is that the estimates are less precise than those that would be obtained using

cell suppression techniques (for the cells that are not suppressed). We again assess the practical

importance of this concern in the context of the Opportunity Atlas. We find that the noise that

10Raw estimates of other statistics, such as the correlation between teenage birth rates and single parent shares,
will be biased because of the addition of noise. But those biases can be easily corrected using standard techniques to
correct for measurement error, e.g., by rescaling the correlation by the (known) amount of variance in teenage birth
rates that is due to noise.

11For simplicity, we conduct this analysis in the publicly available Opportunity Atlas data rather than the con-
fidential data. To do so, we impute the number of teenage births to black women in low-income families as the
product of the predicted teenage birth rate for black women with parents at the 25th percentile of the income
distribution, the total count of black women in the sample, and the fraction of black women with parents
with below-median income. We then suppress cells if the implied count lies in the interval [0.5, 4.5).
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was added to protect privacy does not meaningfully decrease precision because it is much smaller

than the noise already present in the estimates due to sampling variation.

Table 1 demonstrates this point by decomposing the total (count-weighted) variance in the

publicly-available tract-level statistics into the components reflecting sampling noise variance (based

on the standard errors of the estimates), privacy noise variance (based on the known parameters

of the noise distribution), and the remaining “signal” variance (which reflects the variance of the

underlying “truth” under the assumptions used to estimate the standard errors). The first row

shows this breakdown for teenage birth rates for black women raised in low-income families, the

outcome analyzed in Figure 3. Just 0.8% of the total variance across tracts and only 2.8% of the

total noise variance comes from the added privacy noise. Phrased differently, the reliability of the

estimates (the ratio of signal variance to total variance) falls very slightly, from 71.8% to 71.0%, due

to the addition of noise to protect privacy. The other rows of Table 1 provide a similar breakdown

for other outcomes and subgroups. For most outcomes, the privacy noise variance is even smaller

than for teenage birth rates. For a few variables, such as the incarceration rate for white men, the

privacy noise variance share is significantly higher, but it is still always smaller than the noise due

to sampling error.

Of course, noise infusion would have larger effects on reliability in any given application with a

lower value of ε, and even with the same value of ε, it could have larger effects in other applications.

Nevertheless, the Opportunity Atlas demonstrates that one can achieve substantial gains in terms

of bias and privacy protection while incurring only small losses in statistical precision using our

method, especially by optimizing the estimators one uses as discussed at the end of Section III.

V Conclusion

Building on ideas from the differential privacy literature, this paper has developed a practical

noise-infusion method for reducing the privacy loss from disclosing statistics based on confidential

data. The method outperforms existing, widely-used methods of disclosure limitation both in

terms of privacy loss and statistical bias. Importantly, it can be easily applied to virtually any

statistic of interest to social scientists. For example, consider difference-in-differences or regression

discontinuity estimators. Even if there is only one quasi-experiment (e.g., a single policy change in

a given area), one can construct “placebo” estimates by pretending that a similar change occurred

in other cells of the data and computing the maximum observed sensitivity of the estimator across

all cells.
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In future work, it would be useful to develop metrics for privacy loss for algorithms in which a

single statistic (e.g., sensitivity) is disclosed based on a large sample (e.g., at the state or national

level). Here, we argued on an intuitive basis that the release of such statistics has small privacy

costs, but formalizing this idea – perhaps by placing restrictions on distributions or the set of

estimators – could provide a way to offer formal privacy guarantees. More broadly, developing

differential privacy techniques that can be applied to many estimators – as we have done here –

without requiring users to develop new algorithms for each application may help increase the use

of such methods in social science.
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Appendix: Implementation Guide

This guide provides step-by-step instructions for implementing our algorithm to release statistics

constructed from a confidential database. It also provides some suggestions to simplify computation

and minimize the amount of noise that has to be infused to achieve a given level of privacy pro-

tection. Illustrative Stata code that implements the five steps below in the context of a regression

estimate is available here.

Step 0. Estimate the statistic θ you are interested in releasing – e.g., a coefficient from a

regression or a parameter from another statistical model – in the confidential data.

a. All variables must be bounded for the algorithm below to work (i.e., yield finite estimates

of sensitivity). If you are working with unbounded variables, bottom- and top-code them before

proceeding (but do so in a way that does not depend on the particular realized values in any given

sample).

b. Consider alternative estimators that reduce the influence of outliers and will thereby reduce

the amount of noise you need to add to meet a given privacy threshold. For example, in the

context of regression, winsorizing variables at the 5th and 95th percentiles can reduce the influence

of outliers without significantly affecting estimates of the parameters of interest. Estimators such

as median regression may also be less sensitive to outliers (Dwork and Lei 2009).

c. It may be useful to implement Steps 1-4 below with alternative estimators to calculate the

amount of noise that must be added to the estimates using a given estimator. Then choose the

estimator (e.g., the winsorization threshold) that minimizes noise while yielding suitable estimates

for your application.

Implement the following five steps to add noise to the estimates and release them publicly:

Step 1. Calculate local sensitivity LSθ,g for the scalar statistic θg in each cell g of your data,

defined as the largest absolute change in θ from adding or removing a single observation d:

LSθ,g = maxd∈Dg |θ±d − θ|,

where θ±d is the estimate obtained when adding or removing observation d from the dataset Dg in

cell g.

a. Local sensitivity can be calculated using grid search and other standard optimization tech-

niques; for well-behaved relationships, adding points to the corners of the dataspaceDg will typically
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be sufficient to calculate local sensitivity. For example, in a univariate regression where both the

dependent and independent variables are bounded between 0 and 1, adding the points (0, 1), (1, 0),

(0, 0), and (1, 1) is typically adequate to calculate local sensitivity, although users should use finer

grid searches or other numerical optimization methods to confirm the accuracy of any particular

approach.

b. In high-dimensional dataspaces (e.g., multivariable regression with many regressors), remov-

ing points is more computationally tractable than adding new points, since the number of potential

points that can be added grows exponentially with the number of variables. In such cases, it may be

convenient to consider only removals, perhaps after establishing that estimates of local sensitivity

are similar whether or not one allows for the addition of points in a subset of cells. Examining only

removals is most likely to be adequate for privacy when one uses estimators that are not sensitive

to outliers (e.g., through winsorization).

c. If you are interested in reporting a statistic from a single cell (e.g., a treatment effect estimate

you have constructed for a specific subgroup or geographic unit), find other similar units in your

dataset and treat them as distinct cells. Then replicate your estimator in each of those cells,

assigning “placebo” treatment variables that have the same structure as the actual treatment if

necessary, to obtain estimates of local sensitivity across several analogous cells.

Step 2. Compute the maximum observed sensitivity envelope scaling parameter χ:

χ = maxg [Ng × LSθ,g] ,

where Ng is the number of observations (e.g., individuals) used to estimate the statistic θ in cell g.

a. Compute χ by taking the maximum across cells at a sufficiently high level of aggregation that

your data provider considers the privacy risks from releasing the exact value of χ to be negligible

(e.g., the state or national level).

Step 3. Determine the privacy parameter ε for your release using one of the following methods:

a. Follow established guidelines on ε from your data provider.

b. Choose ε by plotting the social gain from greater accuracy vs. ε and choosing a value of

ε that you and the data provider agree optimizes this tradeoff (Abowd and Schmutte 2019). If

there is no clear loss function or decision problem, two practical definitions of the social gain from

accuracy are the mean squared error (MSE) or the classification error in the noise-infused statistic

relative to the truth. The MSE can be computed by calculating the error (θ̃g−θg)2 based on the
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estimate constructed in step 4 below and averaging over several draws of the noise distribution.

Classification error is the probability that the the true value of θg falls below a certain threshold

conditional on the noise-infused value θ̃g falling above that threshold. For example, one might

calculate the probability that θg falls outside the top 10% of the distribution of {θg} conditional

on observing θ̃g in the top 10% of the distribution of
{
θ̃g

}
.

Step 4. Add random noise proportional to maximum observed sensitivity χ and the privacy

parameter ε to each statistic:

θ̃g = θg +
√

2
χ

εNg
ω,

where ω is a random variable with mean 0 and standard deviation 1.

a. The distribution of ω can be chosen depending upon the application and the requirements

of the data provider. If the statistics will be used for downstream analysis, it is convenient to add

N(0, 1) noise so that the total noise variance remains normally distributed. If not, using a LaPlace

distribution L(0, 1√
2
) conforms more precisely to the desired privacy loss limit at all points in the

distribution, with the differences largest in the tails of the distribution.

b. To report standard errors, first estimate the standard error (SE) of the estimate including

the noise added to protect privacy:

SE(θ̃g) =

√
SE (θg)

2 + 2

(
χ

εNg

)2

.

Then apply the same procedure as above to construct public, privacy-protected estimates S̃E(θ̃g)

of the standard errors themselves, treating SE(θ̃g) like the statistics θg above.

c. Construct noise-infused estimates of the count of observations in each cell as follows, using

the same definition of ω as in Step 4a:

Ñg = Ng +
√

2
ω

ε
.

d. To quantify the amount of noise added, compute the standard deviation of the noise distribu-

tion in your cell of interest,
√

2 χ
εNg

, or the share of the variance in your cell-specific estimates that

is due to noise, 2E[( χ
εNg

)2]/V ar(θ̃g), where the expectation is taken over the cells in the dataset.
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Step 5. Release the noise-infused statistics
{
θ̃g

}
and {S̃E(θ̃g)}, counts

{
Ñg

}
, and parameters

that control the amount of noise added (ε and χ) for the groups of interest publicly.

Questions? Email info@opportunityinsights.org
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Signal 
Variance

Sampling Noise 
Variance

Privacy Noise 
Variance

(1) (2) (3)

Panel A. Teenage Birth Rate, for Daughters of Parents at the 25th Percentile
Black Females 71.00% 28.18% 0.82%

White Females 70.58% 28.31% 1.11%

Panel B. Share Incarcerated, for Sons of Parents at the 25th Percentile
Black Males 56.39% 40.21% 2.32%

White Males 33.64% 38.85% 27.51%

Panel C. Household Income Rank, for Children of Parents at the 25th Percentile
All Children 90.96% 8.97% 0.08%

Black Children 75.19% 23.59% 1.22%

White Children 78.90% 20.82% 0.27%

Hispanic Children 69.62% 29.08% 1.30%

Asian Children 69.99% 28.94% 1.06%

American Indian &
Alaska Native Children 81.90% 17.28% 0.82%

White Males 64.71% 34.60% 0.69%

White Females 70.36% 28.93% 0.71%

Black Males 66.58% 31.29% 2.13%

Black Females 73.16% 25.17% 1.67%

Table 1
Variance Decomposition for Tract-Level Estimates: Selected Outcomes and Demographic Groups

Notes: This table reports a variance decomposition of Census-tract-level statistics from the Opportunity Atlas (Chetty et
al. 2018), which are predicted outcomes for children based on the tract in which they grow up. We focus on predicted
outcomes of children with parents at the 25th percentile of the parental income distribution. See Chetty et al. (2018) for
definitions of these variables. We restrict the sample to tracts in which the outcome variable of interest is calculated
using more than fifty observations. We then decompose the total tract-level variance into the fraction that comes from
signal variance (reflecting the variance of the latent parameters of interest under our modelling assumptions), noise
variance due to sampling variation, and noise variance from the noise we infused to protect privacy. Each row in the
table presents this decomposition for a particular outcome variable and demographic group. The three percentages add
to 100% across each row (as the three variance components are independent). To calculate the decomposition, we first
calculate the total variance in the outcome across tracts, weighting by the number of children in the relevant
demographic group with parent income below the national median. We then estimate the noise variance due to sampling
error as the mean of the squared standard errors (again using the same weights). We calculate the privacy noise
variance in each tract based on the sensitivity and privacy risk parameters used in our application of the MOS algorithm
and the tract-specific count, and again take a weighted mean across tracts. Finally, we compute the signal variance as
the total variance minus the sum of the two noise variances. Panel A presents this variance decomposition for the
teenage birth rate for the demographic subgroup specified in the first column, following the U.S. Census Bureau's
definitions of race and Hispanic identity. The first row (of Panel A) corresponds to data plotted in Figure 3. Panels B and
C replicate Panel A using the share incarcerated and child household income rank, respectively.



FIGURE 1: Calculation of Local Sensitivity
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25th pctile predicted value
𝜃𝜃𝑔𝑔= 0.212

Local Sensitivity = 0.137

Notes: This �gure shows how we calculate local sensitivity in a hypothetical cell (Census tract) with 20 individuals. The
�gure presents a scatter plot of children's income ranks in adulthood vs. their parents' income rank. The parameter of interest
(θg) is the predicted value of child income rank at the 25th percentile of the parent income distribution, as calculated from
a univariate regression of child income rank on parent income rank in these data (shown by the solid best-�t line). In these
data, the predicted value is θg = 0.212. Local sensitivity is de�ned by the maximum absolute change in the predicted value
by adding a point to or removing a point from the data. In this example, that occurs when adding the point (0,1), shown
by the hollow dot in the upper left corner of the �gure. With the addition of that point, the estimated regression line shifts
to the dashed line, increasing θg by 0.137 � the local sensitivity of θg.



FIGURE 2: Maximum Observed Sensitivity Envelope
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Notes: This �gure demonstrates our calculation of the Maximum Observed Sensitivity Envelope (MOSE) for a hypothetical
dataset consisting of several cells (Census tracts) analogous to that in Figure 1. To construct this �gure, we calculate the
local sensitivity within each cell as described in Figure 1, and then plot the local sensitivity vs. the number of individuals
in the cell. We use log scales on both axes. The MOSE, depicted by the solid line, is the function MOSE(Ng) =

χ
Ng

, where

χ = maxg [Ng × LSθ,g] = 13.02 in this example.



FIGURE 3: Association between Teenage Birth Rates and Single Parent Shares Across Census

Tracts

A. Noise-Infused Data
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B. Count-Suppressed Data

Slope = 0.028
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Notes: This �gure presents binned scatter plots of the relationship between teenage birth rates for black women and single
parent shares across low-poverty Census tracts. Teenage birth rates are obtained from the publicly available Opportunity
Atlas data and are de�ned as the fraction of black women who have a teenage birth among those born in the 1978-1983
birth cohorts and raised in families at the 25th percentile of the household income distribution in a given Census tract.
Data on the fraction of single headed households is obtained from the 2000 Decennial Census. We restrict the sample to
Census tracts with a poverty rate of less than 7% based on the 2000 Decennial Census and winsorize tracts in the bottom
or top 1% of the distribution of teenage birth rates to reduce the in�uence of outliers. To construct the binned scatter
plots, we �rst bin tracts into 20 groups based on their single-parent share, weighting each tract by the number of black
children under the age of 18 living in households with below median income. Each dot then plots the mean teenage birth
rate (y-axis) vs. the mean single-parent share (x-axis) in each of the twenty bins. We estimate the best-�t line using an OLS
regression on the tract-level data, again weighting by the number of black children under the age of 18 living in households
with below median income. Panel A shows this relationship directly using the noise-infused, publicly available Opportunity
Atlas data on teenage birth. Panel B replicates Panel A after omitting tracts where relatively few women have teenage
births. Speci�cally, we impute the number of teenage births in a tract as the product of the predicted teenage birth rate for
black women with parents at the 25th percentile of the income distribution, the total count of black women in the sample,
and the fraction of black women with parents with below median income. We then suppress cells if the implied count lies in
the interval [0.5, 4.5).



APPENDIX FIGURE 1: Calculation of Global Sensitivity
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Notes: This �gure shows how we calculate global sensitivity in a hypothetical cell (Census tract) with 20 individuals. As in
Figure 1, the �gure presents a scatter plot of children's income ranks in adulthood vs. their parents' income rank. However,
rather than using empirically observed values, we choose a set of data points that make the sensitivity of the regression
estimates to the addition of a single point very large, which occurs as the variance of the dots on the x-axis becomes small.
In this case, adding a single point at (0,1) changes the estimated slope of the regression line (and the corresponding predicted
values) substantially, showing why the global sensitivity of OLS regression estimates can be arbitrarily large.



APPENDIX FIGURE 2: Teenage Birth Rates vs. Counts, by Census Tract

A. Teenage Birth Rates for Black Women vs. Number of Black Women with Teenage Births in Tract
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B. Teenage Birth Rates for Black Women vs. Number of Black Women in Tract
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Notes: This �gure presents binned scatter plots of tract-level teenage birth rates for black women raised in families at the
25th percentile vs. two measures of tract-speci�c counts. Panel A plots teenage birth rates for black women vs. the number
of black women from low-income families who have teenage births in the tract, computed as the product of the predicted
teenage birth rate for black women with parents at the 25th percentile of the income distribution, the total count of black
women in the sample, and the fraction of black women with parents with below-median income. (i.e., the numerator of
the teenage birth rate). Panel B plots teenage birth rates for black women vs. the total number of black women from
below-median-income families in the tract (i.e., the denominator of the teenage birth rate). The binned scatter plots are
constructed by binning tracts into twenty equal-sized bins based on the x-axis variable and plotting the means and of the x
and y variables within each bin.
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