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Abstract

Using data from North Carolina, Jesse Rothstein (2017) presents a comprehensive replication
of Chetty, Friedman, and Rocko↵’s [CFR] (2014a,b) results on teachers’ impacts. In addition,
Rothstein presents new evidence that he argues raises concerns about three aspects of CFR’s
methods and identification assumptions: their treatment of missing data, the validity of their
quasi-experimental design, and their method of controlling for observables when estimating
teachers’ long-term e↵ects. In this paper, we show that Rothstein’s methodological critiques are
not valid by replicating his new empirical findings using simulated data in which none of CFR’s
identification assumptions are violated. We also present supplementary empirical evidence from
our data supporting the assumptions required for CFR’s original analyses. Together, these
results show that: (1) Rothstein’s technique for imputing teacher VA for teachers with missing
data generates bias, while subsamples with no missing data yield estimates of forecast bias
similar to CFR’s baseline results; (2) his proposed prior score “placebo test” rejects valid quasi-
experimental research designs, and the correlation between changes in prior test scores and
current teacher value-added he documents is an artifact of estimating teacher value-added using
prior test score data; and (3) his method of controlling for covariates yields inconsistent estimates
of teachers’ long-term e↵ects, while quasi-experimental designs that do not rely on controls for
observables yield estimates of teachers’ long-term impacts similar to CFR’s baseline results. We
conclude that Rothstein’s important replication study is entirely consistent with – and in fact
reinforces – CFR’s methods and results. Our conclusions match those of Bacher-Hicks, Kane,
and Staiger (2014), who replicate both CFR’s results and Rothstein’s findings using data from
Los Angeles and also conclude that Rothstein’s results raise no concerns about CFR’s analysis.

! We thank Gary Chamberlain, Lawrence Katz, and Michael Stepner for helpful comments and Augustin Bergeron,
Nikolaus Hildebrand, and Benjamin Scuderi for research assistance. On May 4, 2012, Chetty was retained as an expert
witness by Gibson, Dunn, and Crutcher LLP to testify about the importance of teacher e↵ectiveness for student
learning in Vergara v. California, a case that was decided on June 10, 2014, before research on this paper began. On
June 13, 2015, Friedman was retained as a potential expert witness by the Radey Law Firm to advise the Florida
Department of Education on the importance of teacher e↵ectiveness for student learning, as related the development
of Draft Rule 6A-5.0411. His work on this case lasted for approximately one week and he had no involvement in any
legal proceeding. On December 11, 2015, Friedman was retained as an expert witness by the Houston Independent
School District in the matter of Houston Federation of Teachers, et al. v. Houston Independent School District.
Friedman has not shared or discussed this paper with the parties in that case or their attorneys.



In two recent papers, Chetty, Friedman, and Rocko↵ (2014a,b) [CFR] measure teachers’ e↵ects

on students’ test scores and long-term outcomes. The first paper [hereafter, CFR-I] measures the

degree of bias in teacher value-added (VA) estimates using a research design that exploits changes

in teaching sta↵ across years within schools, regressing changes in mean test scores across cohorts

on changes in mean teacher VA. The second paper [hereafter, CFR-II] measures teachers’ long-term

impacts on students’ earnings and other outcomes. CFR’s main conclusions are that (1) teacher

VA estimates exhibit little “forecast bias” – that is, they provide accurate predictions of teachers’

causal e↵ects on student achievement on average – and (2) teachers with high test-score VA also

improve their students’ long-term outcomes, such as college attendance rates and earnings.

Recent studies have replicated CFR’s findings, which were based on data from New York City,

using data from other school districts.1 Jesse Rothstein (2016) successfully replicates CFR-I’s

results on bias in teacher VA using data from North Carolina and presents evidence on teachers’

long-term impacts on students’ outcomes in high school that is consistent with CFR-II’s findings.

Andrew Bacher-Hicks, Thomas Kane, and Douglas Staiger (2016) [hereafter BKS] replicate CFR-

I’s results using data from the Los Angeles Unified School District. These studies collectively

demonstrate that value-added measures of teacher quality exhibit very consistent properties; as

Rothstein (2016) puts it, “the empirical results are remarkably robust across disparate settings.”

Such replications are extremely valuable for evaluating the robustness of CFR’s results and we are

indebted to Rothstein and Bacher-Hicks, Kane, and Staiger for conducting these studies.

In addition to replicating CFR’s findings, Rothstein (2016) raises three concerns about the

validity of CFR’s methods: the treatment of missing data, the validity of the quasi-experimental

design, and the method of controlling for observables when estimating teachers’ long-term e↵ects.

We are grateful that Jesse Rothstein has invested great e↵ort in re-examining CFR’s methodology,

especially since our own interest in teacher value-added was sparked in part by Rothstein’s (2010)

paper on this subject. We have learned a great deal from his work on this topic. However, we

respectfully disagree with each of the points he makes. We show that Rothstein’s methodological

critiques are not valid by replicating each of his new empirical findings using simulated data in which

none of CFR’s identification assumptions are violated. We therefore conclude that Rothstein’s

findings are entirely consistent with CFR’s methods and results. Our conclusions match those of

BKS (2016), who also investigate the issues Rothstein raises in their data and conclude that they

1CFR-I and CFR-II did not name the school district, but it was identified in the Vergara v. California trial.
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raise no concerns about the validity of CFR’s analysis.

The rest of this introduction summarizes our responses to Rothstein’s three main concerns and

then situates this discussion in the context of the broader policy debate on value-added methods.2

Rothstein Concern #1 [Missing Data]: The exclusion of teachers with missing VA data leads

CFR to underestimate the degree of forecast bias in VA measures.

Response: The most definitive way to evaluate whether missing data are a concern is to focus

on the subset of schools where no data are missing. In this subsample, there is no evidence of

forecast bias in New York (CFR-I, Table 5, Column 4), North Carolina (Rothstein 2016, Appendix

Table A5, Column 4), or Los Angeles (BKS 2016, Table 3, Column 5). Rothstein acknowledges that

these results “appear to suggest that sample selection is a non-issue,” but goes on to argue that the

estimates in the subsample with no missing data are “quite imprecise.” The standard errors of the

forecast bias estimates increase from about 2% to 4% when one restricts to the subsample with no

missing data in all three datasets. We disagree with the view that an increase of 2 percentage points

in the standard error makes an estimate of forecast bias – which could theoretically range from 0%

to 100% – “quite imprecise.” Notably, the estimate remains precise enough to reject Rothstein’s

own estimates using alternative methods of handling missing data with p < 0.05.

Instead of focusing on subsamples with no missing data, Rothstein imputes VA for teachers

in cases where it is missing. We present a simple statistical derivation and a simulation showing

that this imputation procedure generates downward-biased estimates of the e↵ect of VA on test

scores even when VA is missing at random, inflating the estimate of forecast bias. This is because

Rothstein’s preferred imputation introduces measurement error in changes in VA across cohorts

when VA is correlated across teachers within school-grade cells, as is the case empirically.3

We conclude that (a) from a theoretical perspective, Rothstein’s estimates with imputed data

are inconsistent and (b) from an empirical perspective, the results remain very similar in subsamples

with no missing data, implying that CFR’s treatment of missing data does not produce bias.

Rothstein Concern #2 [Prior Score “Placebo” Test]: The research design used by CFR to esti-

2In the interest of full disclosure, note that much of this paper is taken from response letters that we submitted
to the American Economic Review during the review process of the CFR papers. In particular, two of Rothstein’s
concerns – on imputation and long-term controls – were raised and addressed during the referee process. Rothstein
was one of the referees of the CFR papers – a fact that was disclosed during his testimony for the defense in Vergara
v. California .

3Rothstein (2016, Section 3.2) acknowledges that this imputation procedure generates bias, but suggests that
the bias is likely to be small. We present Monte Carlo simulations showing that, on the contrary, the bias due to
imputation is of the same order of magnitude as the change in the estimate of forecast bias when imputed data are
included in both New York and North Carolina.
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mate forecast bias and long-term impacts is invalid because it fails a placebo test showing “e↵ects”

of changes in mean teacher VA on changes in prior test scores.

Response: These apparent “placebo e↵ects” stem from a problem with the placebo test itself

rather than a flaw in CFR’s research design. Using stylized examples and simulations, we demon-

strate that Rothstein’s “placebo test” detects a correlation between prior test score changes and

current teacher VA even when the CFR research design is valid. As a result, one cannot conclude

from such a finding that the CFR design is invalid.

Prior test scores cannot be used to conduct placebo tests because VA is itself estimated from

prior test scores. Intuitively, teachers will tend to have high VA estimates when their students

happened to do well in prior years due to a positive shock. Regressing changes in prior test scores

on changes in teacher VA e↵ectively puts the same data on the left- and right-hand sides of the

regression, which mechanically produces a positive coe�cient even with a valid research design.4

Thus, placebo tests using prior scores are not, as Rothstein suggests, akin to checking for balance

on exogenous pre-determined variables in a randomized experiment, because the “treatment e↵ect”

in this setting (VA) is endogenously estimated from data on test scores.5 For the same reason,

Rothstein’s estimates that control for prior test scores are inconsistent, as part of the e↵ect of

changes in teacher VA is incorrectly attributed to changes in prior test scores that are spuriously

correlated with VA.

The results described above show that prior test scores are uninformative about the validity

of the research design and hence do not raise concerns about CFR’s analysis. Nevertheless, to

address any concerns that the prior test score correlation may actually be driven by selection bias,

we show that addressing some of the simplest mechanical e↵ects eliminates the correlation between

changes in lagged scores and current teacher VA but does not a↵ect the estimate of forecast bias.

In particular, simply excluding teachers who taught the same students in the previous year reduces

the coe�cient on prior test scores from 0.171 to a statistically insignificant 0.052 in the New York

data. Excluding all within-school switchers – whose VA is estimated from historical data in the

same school – yields a coe�cient on prior scores of 0.031. None of these changes in the specification

4Rothstein (2016) suggests that such mechanical e↵ects can be addressed by leaving out additional years of data
when estimating teacher VA, but we show that this is not true when shocks to test scores are serially correlated, as
is the case empirically.

5Rothstein finds small correlations between certain exogoneous characteristics (such as an indicator for low family
income based on free-lunch eligibility) and changes in teacher VA in North Carolina, and shows that controlling for
these factors reduces the forecast coe�cient by 3.5 percentage points (Rothstein 2016, Table 2a, Column 3), from
93.3% to 89.8%. This result is not reproduced in New York: CFR-I conducted analogous tests for balance using
exogenous characteristics (such as parent income), and found no such correlations (CFR-I, Table 4, Column 4).
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significantly changes the coe�cient on current scores (i.e., the estimate of forecast bias). Both

Rothstein (2016, Appendix Table A8, Row 5) and BKS (2016, Table 4, Column 6) obtain the same

results – an insignificant coe�cient close to 0 on prior scores and a coe�cient close to 1 on current

scores – when replicating these specifications in North Carolina and Los Angeles.

We conclude that (a) from a theoretical perspective, Rothstein’s prior test score regression is

not a valid placebo test and (b) from an empirical perspective, CFR’s quasi-experimental estimates

of forecast bias remain similar even when one isolates sources of variation in teacher VA that are

not spuriously correlated with prior test scores.

Rothstein Concern #3 [Estimation of Long-Term Impacts]: The estimates of teachers’ long-

term impacts based on OLS regressions rely on strong assumptions that may not hold in practice

and the quasi-experimental estimates may be upward-biased.

Response: Rothstein observes that CFR’s method of controlling for observables, which uses

within-teacher variation to identify the impacts of covariates, relies on strong assumptions. He

proposes an alternative approach that uses between-teacher variation for identification. We demon-

strate using simulations that Rothstein’s approach yields inconsistent estimates under the assump-

tions of CFR-II’s statistical model. Our OLS regression methodology provides an internally con-

sistent approach to estimating teachers’ long-term impacts under the identification assumptions

stated in CFR-II, whereas Rothstein’s proposed methodology does not.

Although Rothstein o↵ers no definitive evidence that the identification assumptions made in

CFR-II are violated, he is certainly correct to raise the possibility that the controls in our OLS

regressions might not adequately account for omitted variable bias; indeed, we emphasized on

page 2 of CFR-II that this is “a very strong assumption.” This is why we returned to our quasi-

experimental research design to obtain empirical estimates that do not rely on such assumptions

(CFR-II, Section IV). We found that the quasi-experimental method yields very similar estimates

of teachers’ long-term impacts for the outcomes for which we have adequate precision (e.g., college

attendance). Rothstein (2016, Table 6) replicates this finding but then (a) argues that these

quasi-experimental estimates are upward-biased because controlling for prior test scores reduces

the estimated e↵ects, and (b) interprets his estimates as providing “no strong basis for conclusions

about the long-run e↵ects of high- vs. low-VA teachers, which in the most credible estimates are not

distinguishable from zero.” We disagree with both of these conclusions. First, controlling for prior

test scores in the quasi-experimental specifications for long-run outcomes yields invalid estimates

for the same reason as discussed above in our response to Concern #2. Second, Rothstein’s failure
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to find significant e↵ects reflects the lack of statistical power in the North Carolina sample, not

a lack of evidence regarding long-term e↵ects in the New York data. In his quasi-experimental

specifications, Rothstein can rule out neither zero e↵ects, nor his own OLS estimates, nor e↵ects

(based on plans for college attendance) larger than those estimated in the New York data.

We conclude that (a) from a theoretical perspective, Rothstein’s critiques of CFR’s method of

controlling for covariates in OLS regressions and of the quasi-experimental estimates are invalid

and (b) from an empirical perspective, CFR-II’s estimates of teachers’ long-term e↵ects are not

inconsistent with the less precise quasi-experimental estimates reported by Rothstein.

In summary, each of Rothstein’s three critiques of CFR’s analysis is not valid: his preferred

method of imputing teacher VA generates bias, his proposed prior score placebo test falsely rejects

valid research designs, and his method of controlling for covariates yields inconsistent estimates of

teachers’ long-term e↵ects. Excluding these incorrect results, Rothstein’s analysis consists of (1) an

exact replication of CFR-I’s analysis showing that standard VA models exhibit little forecast bias in

data from North Carolina and (2) new estimates of high-VA teachers’ positive long-term e↵ects using

the methods of CFR-II. Thus, Rothstein’s rigorous analysis ultimately increases our confidence in

CFR’s results. These conclusions echo those of BKS (2016), who write that “[we] found that teacher

value-added estimates were valid predictors of student achievement. We also demonstrate that

Rothstein’s [prior score] test does not invalidate the CFR design and instead reflects a mechanical

relationship, given that teacher value-added scores from prior years and baseline test scores can be

based on the same data.”

Taking a step back, it is helpful to situate this discussion about bias in VA estimates in the

context of the broader debate about VA as a tool to evaluate teacher quality. CFR estimate that

95.7% of the di↵erence in VA between teachers reflects causal impacts on student achievement

(CFR-I, Table 4, Column 2). Rothstein (2016, Table 3a, Column 2) finds that controlling for

lagged test score changes reduces this estimate to 93.3% in the North Carolina data. Imputing VA

for teachers with missing data further reduces the estimate to 86.0% (Rothstein 2016, Table 3b,

Column 2). In short, all three quasi-experimental studies (including BKS’ Los Angeles analysis)

agree that at least 86% of the di↵erences in VA between teachers reflect causal impacts on student

achievement. Similarly, even Rothstein’s preferred estimates of the long-term e↵ects of teacher VA

on high school graduation and planned college attendance rates – which are about 30% smaller

than his estimates using CFR-II’s specifications – would still imply very large gains from improving
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teacher VA.6 In contrast with Rothstein’s interpretation of these results, our assessment is that

they show that VA measures exhibit remarkably consistent properties across three large, disparate

datasets. From a policy perspective, resolving whether 86.0%, 93.3% or 95.7% of di↵erences in VA

reflect causal e↵ects is not critical for deciding whether evaluating teachers based on their VA can

produce substantial expected gains for students.

Rothstein argues that the magnitude of these di↵erences is larger than suggested by the preced-

ing discussion by turning to a di↵erent notion of bias, which CFR-I term “teacher-level” bias: the

extent to which individual teachers’ VA estimates di↵er in expectation from their true e↵ects. As

discussed in CFR-I (pages 2601-2602 and Online Appendix B), the relevant notion of bias depends

upon the policy question one seeks to answer. If we are interested in calculating the expected gains

from policies that select teachers based on their VA, as in CFR-II, then forecast bias is what mat-

ters: forecast bias of 10% reduces the expected gains from selecting teachers based on VA by 10%.

If we are interested in the degree to which teachers may be misclassified based on VA estimates

relative to their true e↵ects, then teacher-level bias becomes relevant. CFR-I’s research design

was designed to estimate forecast bias and does not itself produce any estimates of teacher-level

bias. As a result, the present debate does not have clear implications for the degree of teacher-level

bias: even if forecast bias were smaller than estimated by CFR, teacher-level bias could potentially

exceed the amount suggested by Rothstein. Rothstein makes specific structural assumptions to

translate his estimate of forecast bias to predictions about teacher-level bias. Our view is that

teacher-level bias should instead be estimated directly in future work using new quasi-experimental

or experimental designs. This is why we focus on the degree of forecast bias – the parameter that

CFR, Rothstein, and BKS actually estimate – to assess how much their results di↵er.

The remainder of this note is organized as follows. Section I addresses missing data on teacher

VA. Section II addresses the prior test score “placebo test.” Section III discusses the estimation of

long-term impacts. Section IV concludes.

I Missing Data on Teacher Value-Added

The first concern raised in Rothstein (2016, page 20) is that CFR’s treatment of teachers with

missing value-added leads them to understate the degree of forecast bias in VA estimates.

To help orient the reader, we first briefly review the quasi-experimental research design devel-

6We focus on Rothstein’s results for high school graduation and planned college attendance because they are most
similar to the outcomes studied by CFR-II. As we discuss in Section III.A, teachers’ e↵ects on the other outcomes
Rothstein examines – high school GPA and class rank – need not mirror their e↵ects on outcomes in adulthood.
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oped in CFR-I to estimate the degree of forecast bias in VA. The design exploits teacher turnover at

the school-grade level for identification. For example, suppose a high-VA 4th grade teacher leaves

school A to teach at another school in 1995. Because of this sta↵ change, 4th graders in school A

in 1995 will have lower VA teachers on average than the previous cohort of students in school A.

If VA estimates have predictive content, we would expect 4th grade test scores for the 1995 cohort

to be lower on average than the 1994 cohort. Building on this intuition, we estimate the amount

of forecast bias by regressing changes in average test scores across consecutive cohorts of children

within a school on changes in the mean value-added of the teaching sta↵. CFR-I estimate that a 1

unit change in mean VA across cohorts leads to a � ' 0.96 unit increase in test scores. The esti-

mated amount of forecast bias is therefore B = 1� � = 4% and is not statistically distinguishable

from 0.

Our teacher switchers research design uses leave-two-year-out estimates of VA (i.e., VA estimates

based on test score data excluding 1994 and 1995 in the example above). This two-year leave-out

approach eliminates mechanical relationships between the change in VA and the change in test

scores that can arise from noise in student test scores. Since some teachers teach for only one or

two years before leaving the school district, we do not have VA estimates for 16% of the teacher

observations in our New York data. This is the root of the missing data problem that this section

discusses.

In our baseline analysis, we exclude teachers with missing VA from our sample, recognizing that

this could lead to selection bias. As we noted in CFR-I (Section V.E), “restricting the sample to

classrooms with non-missing VA estimates could lead to violations of our identification assumption

because we do not use the entire school-grade-subject cohort for identification.” Missing data on

teacher VA can potentially create selection bias because of non-random assignment of students to

classrooms within a school-grade-subject-year cell.7 We addressed this concern about selection bias

by restricting the sample to school-grade-subject-year cells with no missing teacher data – i.e., cells

where the missing data problem does not arise – and we obtained very similar estimates in this

subsample (Column 4 of Table 5, CFR-I). Rothstein and BKS replicate these findings in North

Carolina and Los Angeles (Rothstein 2016, Appendix Table A5, Column 4; BKS 2016, Table 3,

Column 5). Despite wide variation in the extent of missing data – 27% in North Carolina, 16% in

7To take an extreme example, suppose teacher information is reported for only one of 5 classrooms in a given
school-grade-subject cell. In this case, a comparison of mean scores across students in the two cohorts with non-
missing teacher information is equivalent to comparing mean scores across a single classroom in two di↵erent years.
This could violate the identifying assumption of CFR’s quasi-experimental design if assignment to classrooms is
non-random.
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New York, and 8% in Los Angeles – all three analyses using the restricted sample suggest negligible

bias in VA.

Rothstein presents no argument for why estimates of forecast bias in the subset of schools with

no missing data are invalid. Instead, he argues that an alternative approach – imputing a value

of 0 for teachers with missing VA – is a better way to deal with missing data. He observes that

one obtains larger estimates of forecast bias when one uses this approach (i.e., a lower estimate of

the VA prediction coe�cient �). We had implemented this approach in our original paper, and

like Rothstein, we show that imputing 0’s for teachers with missing VA yields larger estimates of

forecast bias (Cols 2-3, Table 5, CFR-I). In CFR-I, we explain that “this is to be expected because

the imputation of teacher VA generates measurement error in average teaching quality, leading to

attenuation bias. For example, if a highly e↵ective teacher enters the district for only a single year,

so that we are not able to calculate VA from other years of data, our imputation procedure will treat

this teacher as being average, leading to measurement error in mean VA in the school-grade-subject

cell.”

This section recapitulates and expands upon the above points. We begin by reviewing the

empirical results which show that both in our data and Rothstein’s data, restricting the sample to

school-grade-subject-year cells with no missing teacher data yields estimates that are very similar

to our baseline results. We then present a simple derivation which shows that imputing a value

of 0 to teachers with missing data yields attenuated estimates of � when VA is correlated across

teachers within a cell and thus overstates forecast bias B, just as one finds empirically.

I.A Empirical Estimates from Subsamples Without Missing Data

In any empirical application, the simplest and most direct method of evaluating the e↵ects of missing

data is to find a sample (e.g., a set of schools) where there is no missing data. We implement this

approach by restricting the sample to school-grade-subject-year cells with no missing teacher VA

data in both the current and preceding year. Restricting the sample at the school-grade-subject

level does not generate selection bias because we exclude entire cohorts rather than individual

classrooms. Selection bias arises from potential non-random assignment of students to classrooms

within school-grade-subject-year cells. When we exclude entire school-grade-subject-year cells from

the analysis, we obtain a consistent estimate that is free from such selection bias, albeit a local

average treatment e↵ect that applies to schools with non-missing data.

Table 1 reproduces a set of specifications from CFR-I (Tables 4 and 5), Rothstein (2016, Ap-
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pendix Tables A4 and A5), and BKS (Table 3) that conduct such an analysis. Column 1 shows

that the baseline approach of using the entire sample and excluding teachers with missing VA data

generates prediction coe�cients of � ' 1 in all three datasets. The estimate is 0.974 (s.e. = 0.033)

in New York, 1.097 (s.e. = 0.022) in North Carolina, and 1.03 (s.e. = 0.044) in Los Angeles.8

Column 2 restricts the sample to observations to school-grade-subject-year cells in which there

is no missing VA data in both the current and preceding year. In this subsample, which includes

30% of the school-grade-subject-year cells in the New York data, � = 0.990 (s.e. = 0.045). Sim-

ilarly, Rothstein finds that in the North Carolina data, when he restricts to cells with no missing

data, the resulting coe�cient is � = 1.081 (s.e. = 0.043). For the non-missing subsample in Los

Angeles, BKS (2016) report a coe�cient of 0.973 (s.e. = 0.048). Rothstein acknowledges that these

results “suggest that sample selection is a non-issue,” but then dismisses these estimates as “quite

imprecise,” even though the standard errors di↵er from the baseline estimates by less than 0.02

and are su�ciently small to rule out the estimate he obtains using imputation for missing data.9

Of course, the specification in Column 2 of Table 1 only provides an estimate of forecast bias

in the subsample without missing data. The schools without any missing data are very similar to

the district as a whole on observables, suggesting that the degree of forecast bias in that sample

is likely to be representative of forecast bias in general. Nevertheless, to assess the stability of the

estimate across samples, in Column 3 of Table 1, we restrict the sample to school-grade-subject-year

cells where VA is missing for less than 25% of the observations. This sample covers 65% of the

school-grade-subject-year cells in the New York data. Following Rothstein’s preferred procedure

of imputing a value of 0 (the sample mean) for teachers with missing VA, we obtain an estimate

of � = 0.952 (s.e. = 0.032). We obtain � ' 1 in this sample despite imputing 0 for missing data

– which we show below yields biased estimates of � – because VA is missing for only 6% of the

observations in this subsample.10

8Why the estimate in North Carolina is greater than one is unclear; an earlier version of Rothstein’s paper (2014)
reported a coe�cient of 1.050 (s.e. = 0.023) from a regression with three percent fewer observations. However,
Rothstein (2016) reports that adding school-year fixed e↵ects, rather than year fixed e↵ects, brings the estimates
much closer to one.

9Rothstein also notes that these specifications include year fixed e↵ects, rather than school-by-year fixed e↵ects. In
the New York data, specifications with year- and school-by-year fixed e↵ects yield estimates that are not statistically
distinguishable from one another.

10While roughly half of the school-grade-year cells with any missing VA data in New York pass the “25% or less”
restriction, this is true of only approximately 15% of cells with missing VA in North Carolina, so there is little to be
gained in terms of generalizeability from this specification in Rothstein’s sample. Imposing this restriction produces
an estimate of ! = 1.100 (s.e. = 0.035) in the North Carolina data, similar to the sample with no missing data. BKS
(2016) do not report estimates for the “25% or less missing” sample, presumably because their subsample with no
missing VA already covers 63 percent of the Los Angeles data.
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The key lesson of Columns 1-3 of Table 1 is that the baseline estimates of � are reproduced

almost exactly in subsamples with little or no missing VA information (which cover two-thirds of

the New York data). We therefore conclude that CFR-I’s baseline estimates of forecast bias are not

substantively biased by the exclusion of teachers with missing VA. We believe that any proposal

for why missing data creates bias should first explain why the results do not change in subsamples

with little or no missing data. Rothstein (2016) does not o↵er such an explanation; instead, he

proposes an imputation procedure that yields di↵erent results, which we turn to next.

I.B Parametric Imputation of VA with Missing Data

An alternative method of dealing with missing data is to model the underlying data-generating

process and parametrically impute a VA estimate for teachers with missing data. The simplest

approach is to assume that the VA of teachers with missing data is drawn at random from a

distribution with mean 0 (that is, with a mean equal to sample-wide average teacher quality).

Importantly, this assumption implies that teacher VA is uncorrelated across teachers within the

same school-grade-subject-year cell. Under this assumption, imputing µ̂

jt

= 0 (the unconditional

“grand” mean) for teachers with missing data yields unbiased estimates of forecast bias. Column

4 of Table 1 replicates the specification in Column 1, including teachers with missing VA data by

assigning them a VA of 0. This yields a prediction coe�cient of � = 0.877 in the New York data and

0.936 in the North Carolina data – noticeably lower than the estimates obtained in the preceding

columns.

Why does imputing 0 to teachers with missing VA reduce the estimate of �? One problem

is that the crucial assumption – that VA is uncorrelated across teachers within a school-grade-

subject cell – does not hold in practice. In the New York data, the VA of those entering and

leaving a given school-grade-subject cell has a correlation of approximately 0.2, consistent with

well-established results in the literature that teacher quality varies systematically across schools

because of sorting and other factors. That is, if teacher A (who is leaving the cell) was a low VA

teacher, teacher B (who replaces her) tends to be a low VA teacher as well. Now suppose VA is

missing for teacher B. If we impute 0 to teacher B, we systematically overstate the change in VA

relative to the truth. This exaggerates the change in VA across cohorts (the independent variable

in our cross-cohort quasi-experimental regression specification) and therefore biases the estimate

of � toward 0. Conceptually, when the assumption that the VA of missing teachers is drawn at

random is violated, 0 is no longer an unbiased forecast of the VA for an entering/exiting teacher
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with missing data.

Another way to see this point is to consider the experimental study by Kane and Staiger (2008),

hereafter KS, where pairs of teachers within the same school-grade-subject-year cell were randomly

assigned one of two classrooms. KS run a regression of the di↵erence in class average end-of-year

test scores on the di↵erence in VA between the two teachers. Suppose that KS were missing a

VA estimate for one of the two teachers in some of their randomization cells, and that these cells

with missing data were selected at random. Rather than drop the cell – which is analogous to

what we do above in Column 2 of Table 1 – Rothstein would suggest imputing VA of zero for the

missing teacher. If VA is positively correlated across teachers within cells, as is true in practice,

then imputing the unconditional mean (0) to teachers with missing data will overstate within-

pair di↵erences in VA. This will attenuate the prediction coe�cient obtained from the experiment,

leading to an upward-biased estimate of the degree of forecast bias.

Statistical Derivation. To formalize this logic, we present a derivation showing the bias due to

imputation in our switchers design. Consider a simplified version of the statistical model in CFR-I

in which there are many schools s, each with one grade and one subject. We have data on students’

test scores for two years, t 2 {1, 2}, and use changes in the teaching sta↵ between years t = 1

and t = 2 to estimate forecast bias. To focus on the problem of missing data, we assume that if a

teacher’s VA is observed, it is observed without error.

Each school has three classrooms of equal size, taught by three di↵erent teachers. Teachers

K and M are present in the school in both years 1 and 2. Teacher L is present in year 1 and is

replaced by a new teacher Z in year 2. Let µ

js

denote the VA of teacher j in school s, which we

assume is fixed over time for simplicity (i.e., there is no drift in teacher quality). The change in

average VA between years 1 and 2 in school s is �µ̄

s

= µZs ! µLs
3 . Let Corr

!
µ

js

, µ

j

!
,s

"
= ⇢ denote

the correlation between the VA of any two teachers j and j

" who teach in the same school. Denote

by �Q

s

the measured change in VA.

The mean test score of students in the class taught by teacher j in year t in school s is

Ā

jts

= µ

j

+ "

jts

,

where we ignore the e↵ects of covariates for simplicity.

We begin with the case where all teachers’ VA are observed. Let �Ā

s

denote the change in

mean test scores for students between the two years in school s and �µ̄

s

the change in mean VA.
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The quasi-experimental cross-cohort regression is

�Ā

s

= ��Q

s

+ ⌫

s

,

where ⌫
s

denotes the di↵erence in average error terms within each school. To highlight the e↵ects of

missing data, we assume the quasi-experimental design is otherwise valid, so that Cov (�µ̄

s

, ⌫

s

) = 0.

With no missing data, where �Q

s

= �µ̄

s

, it is clear that this regression would yield a consistent

estimate of the true coe�cient, � = 1.

Now suppose we have no data on the VA of teacher Z, the entering teacher, and teacher M , one

of the teachers who is present in both years. Following Rothstein’s preferred approach, suppose we

impute µ

Z

= 0 and µ

M

= 0 and run the regression

�Ā

s

= �

imp

�Q

s

+ ⌫

s

. (1)

Since �Q

s

= �µ

L

/3, The estimate obtained from this regression, �̂
imp

will converge to

�

imp

=
Cov (�µ̄

s

,�Q

s

)

V ar (�Q

s

)
=

Cov

!
µZs ! µLs

3 ,�µLs
3

"

V ar

!
�µLs

3

"

=
V ar (µ

Ls

)� Cov (µ
Zs

, µ

Ls

)

V ar (µ
Ls

)

= 1� ⇢,

where we have assumed that V ar (µ
L

) = V ar (µ
Z

) in the final step. This expression shows that

when ⇢ > 0, as is true empirically for teachers with non-missing VA, imputing 0’s will bias �
imp

downward relative to 1, i.e. overstate the degree of forecast bias B = 1� �.11

Rothstein (2016, Section 3.2) recognizes that this imputation procedure generates bias, but

argues that the bias from assigning all teachers a VA of 0 is small. To assess the validity of this

claim, we construct a simple Monte Carlo simulation in which VA is missing at random for 20%

of teachers and has a correlation of ⇢ = 0.2 across teachers within schools, matching the empirical

values in the New York data (see Appendix C for the code). When missing data are excluded,

a regression of changes in mean test scores on changes in mean VA in this simulation yields an

estimate of � that is not significantly di↵erent from 1, as expected. In contrast, imputing VA of 0

for teachers with missing VA yields an estimate of �
imp

' 0.93. Hence, imputing teacher VA leads

11The fact that " > 0 implies that one may be able to obtain a better forecast of teacher VA by using information
about their peers’ performance. This is not inconsistent with CFR’s conclusions that standard VA estimates, which
are based on a teacher’s own performance, are forecast unbiased. As CFR-I (Section I.C) emphasize, their analysis
does not show that standard VA estimates are optimal forecasts of teacher e↵ectiveness given all available information;
it only establishes that these VA estimates are unbiased forecasts.
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to a downward-biased estimate of � by about 7%, similar to the magnitude by which the empirical

estimates of � change when imputed data are included in both the New York and North Carolina

data.

The analysis above gives one simple example to illustrate why Rothstein’s preferred imputation

procedure will generally yield inconsistent estimates of forecast bias. This is just one of many

potential ways in which the parametric modeling assumptions necessary to impute VA might be

violated. Another violation, discussed by BKS (2016), arises from the fact that the teachers with

missing data – who tend to be less experienced – have lower true VA on average (based on estimates

that do not leave two years of data out). This again leads to bias when one imputes a value of

0. The broader point is that any imputation procedure – imputing 0 for all teachers or more

sophisticated procedures – will generate measurement error in teacher VA unless the imputations

perfectly mirror the data generating process for teacher VA, thereby producing biased estimates of

�.

I.C Discussion

There are two approaches to dealing with the selection bias that could arise from missing estimates

of teacher value-added. One approach is to impute VA based on a specific model of the VA

distribution for teachers with missing data. Although theoretically appealing, this approach is prone

to errors because one must make strong, untestable parametric assumptions about the distribution

of VA for teachers with missing data. An alternative, non-parametric approach is to restrict the

sample to school-grade-subject-year cells without missing data and assess how the estimates change.

This approach consistently yields estimates of forecast bias close to zero in the New York, North

Carolina, and Los Angeles datasets. In our view, this evidence shows conclusively that missing

data does not a↵ect estimates of forecast bias significantly.

Since imputing VA of 0 to teachers with missing data yields inconsistent estimates of forecast

bias, we do not consider specifications with imputed VA data further in this paper.12

12Rothstein suggests that there is an interaction between his concern regarding missing data and his concern about
the correlation of teacher VA with prior test scores (which we turn to below). In particular, he argues that the
prior score correlation is “mostly an artifact of CFR-I’s sample construction, which excludes a non-random subset of
classrooms [due to missing VA data].” However, this hypothesis is contradicted by his own estimates showing that
controlling for prior scores reduces the estimate of ! by a similar magnitude even in the subsample of schools that
have no missing teacher VA data (Rothstein 2014, Appendix Table 5, Column 4, Panels B and C). We therefore
address the missing data and prior score issues independently.
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II Using Prior Test Scores for Placebo Tests

The second issue raised in Rothstein (2016) concerns the identification assumptions underlying

CFR’s quasi-experimental switchers design. Both Rothstein (2016) and BKS (2016) show that

regressing changes in mean scores in the prior grade on changes in mean teacher VA across cohorts

yields a positive coe�cient, a result we confirm in our own data. Rothstein argues that this “placebo

test” shows that CFR’s quasi-experimental teacher switching design is invalid, as changes in current

teacher quality cannot have a causal e↵ect on students’ past test scores. He then shows that if one

controls for the di↵erences in prior test scores across cohorts, VA estimates exhibit greater forecast

bias than suggested by CFR’s analysis. In particular, controlling for lagged test scores in the North

Carolina yields an estimate of � = 0.933 (Rothstein 2016, Table 3, Column 2). This estimate

di↵ers from CFR-I’s (Table 4, Column 2) estimate – which does not control for lagged scores – of

� = 0.957 by 0.024 (2.4% forecast bias), a di↵erence that is less than the standard error of CFR’s

estimate.

In this section, we explain why the correlation between changes in prior (lagged) scores and

current teacher VA is consistent with the assumptions underlying CFR’s research design and in fact

should be expected because VA is estimated using prior test scores. We first demonstrate using

stylized examples and Monte Carlo simulations that changes in current teacher VA will generally

be correlated with changes in prior scores even when the quasi-experimental research design yields

valid estimates of causal e↵ects.13 We then return to the New York data and show that excluding

variation from teachers who switch across grades within a school eliminates the correlation with

prior scores but does not a↵ect our baseline estimates of forecast bias. These empirical results

confirm that the relationship between changes in VA and lagged scores is spurious and not driven

by selection bias. Finally, we show that Rothstein’s approach of controlling for lagged test scores

yields inconsistent estimates of forecast bias, unlike CFR’s original implementation of the quasi-

experimental design.

We begin with a simple example that illustrates the fundamental problem in using prior test

scores to conduct placebo tests in value-added models. We then present the simulation results and

turn to the empirical results.

13This discussion parallels an earlier debate about the test for selection bias in VA estimates using prior scores
proposed by Rothstein (2010). Goldhaber and Chaplin (2015) and Chetty, Friedman, and Rocko↵ (2016) present
theoretical and simulation-based evidence that this test can falsely detect bias in VA estimates even under random
assignment of students to classrooms for reasons related to those discussed below.
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II.A Stylized Example

In Table 2a, we present an example that illustrates why fluctuations in test scores due to shocks

can produce a spurious correlation between changes in teacher VA across cohorts and changes in

prior test scores. Consider two adjacent cohorts of 5th grade students in a given school and focus

on their math test scores. Cohort 1 attends 5th grade in 1994 and cohort 2 in 1995. A 5th grade

math teacher who has worked for several years switches to a di↵erent grade in the school after the

1994 school year, and is replaced with a new math teacher in 1995. Assume that the students in

the two cohorts do not di↵er in their latent ability on average, so CFR’s approach of identifying

the e↵ects of teacher VA based on di↵erences in 5th grade test scores across cohorts yields unbiased

estimates.

Kane and Staiger (2001) document that there are significant fluctuations in test scores across

years within schools because of shocks that are correlated across students (e.g., because the math

curriculum in a school happens to be well-aligned with the standardized math test administered in

a given year). To understand the impacts of such shocks in our example, suppose the school had an

idiosyncratic non-persistent positive shock to math scores in 1993, but that otherwise scores and

teacher quality remained stable over time at some level that we normalize to zero. This positive

shock causes cohort 1 (who is in 4th grade in 1993) to have higher 4th grade math scores than

cohort 2 (who is in 4th grade in 1994). Thus, from the perspective of 5th grade, the change in prior

test scores across the 1994-1995 cohorts is negative because of the positive shock in 1993.

Now consider the implications of the shock in 1993 for teachers’ VA estimates. Since the

departing 5th grade teacher was teaching in the school in 1993 when the positive shock occurred,

her estimated VA will be higher because her VA is estimated using test score data from 1993 (and

other prior years). Hence, the positive shock in 1993 will increase the estimated VA of the departing

teacher relative to the new teacher, whose VA was not estimated using data from 1993 because she

was not in the school at that time. Thus, the positive shock in 1993 also induces a negative change

in mean teacher VA between the 1994-1995 cohorts.

Putting together the changes in test scores and changes in VA, we see that random school-level

shocks in 1993 will induce a positive correlation between changes in mean teacher VA in 5th grade

between 1994-1995 and prior test scores for 5th graders. Thus the “placebo test” using prior scores

rejects the quasi-experimental design even though it is actually valid. The fundamental problem is

that the prior test score data (in this example, from 1993) is used both to evaluate the validity of
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the design and to estimate VA, so transitory shocks enter both the VA estimates and prior scores.

If the shocks to test scores were independent across years, as assumed in the example in Table

2a, one could eliminate the spurious correlation with prior scores by leaving out additional years

of data when estimating VA. For example, consider a leave-three-year-out estimate of VA – i.e.,

an estimate of VA that excludes data from 1993-1995. Such a leave-three-year-out VA estimate

would be una↵ected by shocks in 1993 and thus would not be correlated with prior test scores in

the simple example. However, the more plausible and empirically relevant scenario is one in which

shocks are serially correlated across years, in which case a three-year-leave-out does not eliminate

the spurious correlation with prior scores. We illustrate this point in Table 2b, which presents

an example of a serially correlated shock. In this example, there is positive shock to mean test

scores of +1 in 1992. This shock dissipates to +0.5 in 1993 and disappears entirely by 1994. Here,

mean prior (4th grade) test scores are 0.5 units higher for the 5th graders in 1994 relative to 5th

graders in 1995. And the shock of +1 in 1992 increases the leave-three-year-out VA estimate of

the departing 5th grade teacher, but has no e↵ect on the VA of the entering teacher. As a result,

leaving out additional years of data when estimating VA, as suggested by Rothstein (2016, Online

Appendix), does not eliminate the spurious correlation between changes in VA and changes in prior

test scores.14 Unless one knows the precise correlation structure of shocks to test scores, one cannot

construct a VA estimate that is guaranteed to be orthogonal to noise in test scores in any period.

Note that in both of these examples, the change in 5th grade math scores across cohorts is

una↵ected by the prior shocks, so the shocks do not a↵ect the relationship between the change

in VA and the change in current test scores. Hence, the CFR design yields unbiased estimates

of � in both of these examples despite failing the prior score “placebo test.” If the shocks were

more persistent and decayed di↵erentially across later cohorts, they could induce violations of the

identification assumption required for CFR’s design, which requires that student unobservables are

balanced across the two cohorts (Assumption 3 in CFR-I). We view such di↵erential shocks as

one of many unobservables that could potentially vary across cohorts and violate the identification

assumption underlying the quasi-experimental design. This observation underscores an important

point: the examples above simply demonstrate that Rothstein’s analysis of prior test scores is

not informative about the validity of the quasi-experimental design. Of course, this fact does not

automatically imply that the CFR design is actually valid. To assess the validity of the design, one

14 In this stylized example, in which shocks dissipate within three years, a leave-four-year-out estimate of VA would
eliminate the spurious correlation. In general, however, leaving out additional years of historical data will not solve
the problem because the shocks may persist over longer horizons.
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needs to use other approaches, such as the tests implemented in CFR-I, which we review briefly at

the end of this section.

II.B Simulation Results

To verify the logic of the simple example above, we present simulation results which illustrate that

one will find correlations with prior test scores even when the quasi-experimental design yields

consistent estimates of the degree of forecast bias. The code for this simulation is provided in

Appendix C.

Our simulation is based on a simplified version of the statistical model in CFR-I. We consider

only one subject and ignore drift in teacher quality across years. We also ignore heterogeneity

across students in terms of ability, so that variation in test scores is driven solely by teacher value-

added and shocks to test scores. We allow for three types of shocks to test scores, each of which are

present in the data: idiosyncratic student-level shocks, class-level shocks, and a serially correlated

shock at the school-year level. Teachers switch among school-grade cells, generating the variation

that drives our quasi-experimental design. Teachers are randomly assigned to students, so the true

causal e↵ect of VA on test scores is � = 1.

We use the simulated data to estimate forecast bias and correlations with prior test scores using

the teacher switchers design. The results of this analysis are presented in Table 3. The first row

of this table reports estimates from OLS regressions of changes in mean current test scores across

cohorts (�A

t

) on changes in mean VA across cohorts (�VA

t

). The second row reports estimates

from OLS regressions of changes in prior test scores (�A

t! 1) on �VA

t

. Each column reports

estimates from a di↵erent specification.

In Column 1, we estimate VA using a two-year-leave-out, as in CFR-I. That is, we exclude data

from years t and t� 1 when estimating VA and calculating the change in mean VA between school

years t and t� 1 in each school-grade cell. We then regress the change in test scores (�A

t

) on the

change in value-added to obtain our baseline quasi-experimental estimate. This regression yields

an estimate of � ' 1 (Panel A, Column 1), confirming that the quasi-experimental design recovers

the true value of � in this simulation. Panel B of Column 1 shows that regressing the change in

lagged scores (�A

t! 1) on �VA

t

yields a coe�cient of 0.138. That is, changes in VA are spuriously

correlated with changes in prior test scores even though teachers are randomly assigned to students.

In Column 2, we follow Rothstein’s (2016, Online Appendix) proposal of leaving out additional

years of data when estimating VA. In particular, we use a three-year-leave-out by excluding years
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t�2, t�1, and t when estimating the change in mean VA between years t and t�1. The coe�cient

on the prior score (Panel B) remains positive at 0.097 in this specification, showing that leaving out

additional years of data does not eliminate the spurious correlation with prior scores. Meanwhile,

the coe�cient on current scores remains at 1 in this specification.

In our simulation, the only source of the correlation between changes in prior scores and current

VA is serially correlated school-year shocks (of course, more generally there may be many other

shocks that produce such a correlation). We can eliminate these shocks by adding school-year

fixed e↵ects to our regression specifications.15 Column 3 shows that including school-year fixed

e↵ects leaves the coe�cient on current scores essentially unchanged (� = 0.972 with a standard

error of 0.018), but eliminates the “e↵ect” of teacher VA on prior test scores, where we now obtain

a statistically insignificant coe�cient of 0.009. This confirms that the relationship between prior

scores and current VA is in fact driven by school-year shocks, with no consequence for the estimated

e↵ect on current scores.

These simulations demonstrate that lagged test scores are uninformative about the degree of

bias in the quasi-experimental design. Even in a setting where teachers are randomly assigned to

students and the CFR-I design recovers the correct coe�cient on the e↵ect of value-added on current

scores, changes in measured VA and changes in lagged scores are positively correlated. Moreover,

the correlation between prior test scores and changes in mean VA fluctuates substantially across

specifications that use di↵erent sources of variation even though the estimate of the parameter of

interest (�) remains stable.

II.C Empirical Results

The simulations above establish that the correlation between changes in prior test scores and mean

teacher VA provide no definitive evidence for or against the validity of the quasi-experimental

design. Nevertheless, one may still be concerned that the correlation between prior scores and

changes in VA in the data is driven by selection bias rather than spurious e↵ects. To address such

concerns, we return to the New York data and show that accounting for some simple mechanical

e↵ects eliminates the correlation between changes in lagged scores and current teacher VA but does

not a↵ect the original estimate of forecast bias.

Table 4 presents a set of variants of the baseline specification used in Table 4 of CFR-I to

estimate forecast bias. As in Table 3, Panel A reports estimates from regressions of changes in

15Because we only consider one subject in our simulation, school-year fixed e↵ects are equivalent to the school-
year-subject fixed e↵ects that we use in our empirical analysis below.
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mean current test scores across cohorts (�A

t

) on changes in mean VA across cohorts (�VA

t

), while

Panel B reports estimates from regressions of changes in mean prior test scores (�A

t! 1) on �VA

t

.

In addition to the coe�cient and standard error, we also report p-values from tests of equality with

our baseline estimate (� = 0.957) for the regressions with current scores in Panel A and tests for

equality with 0 for the regressions with lagged scores in Panel B.

We begin in Column 1 by replicating the baseline specification used by Rothstein (2016, Table

2, Column 1), which includes school-year fixed e↵ects. For current scores, we obtain a coe�cient

on changes in teacher VA of � = 0.957, replicating the estimate reported in CFR-I (Table 4,

Column 2). For prior scores, the corresponding regression coe�cient is 0.171, an estimate that is

significantly di↵erent than zero and similar in magnitude to Rothstein’s estimate of 0.144 (Rothstein

2016, Table 2, Column 1). To assess whether this coe�cient of 0.171 on prior scores reflects a

spurious correlation as suggested by our simulations or selection bias as suggested by Rothstein,

we implement three sets of specifications that isolate di↵erent sources of variation in mean teacher

VA.16

1) Dropping Teachers who Follow Students. One direct way in which a teacher’s VA can be

correlated with students’ prior test scores is if the teacher taught the same students in a previous

year. Such “followers” create a correlation between changes in teacher VA and lagged scores across

cohorts because noise in students’ lagged scores directly enters these teachers’ VA estimates and

because these teachers have direct treatment e↵ects on prior scores.17 We remove the variation

arising from followers by calculating mean VA for teachers in grade g in year t excluding teachers

who taught in grade g � 1 in the same school in year t � 1, which we denote by VA

nf

t

. We then

replicate the specifications in Column 1 of Table 4, instrumenting for the actual change in VA

(�VA

t

) using �VA

nf

t

.18 The identification assumption required to obtain consistent estimates of �

using this IV approach is that changes in�VA

nf

t

are orthogonal to changes in student unobservables,

a variant of Assumption 3 in CFR-I.

Column 2 of Table 4 reports the resulting 2SLS estimates. The 2SLS regression coe�cient

for prior test scores falls to 0.052 in this specification, and is no longer statistically significant.

Meanwhile, the 2SLS coe�cient for current scores is 0.923, and we cannot reject equality with the

16The purpose of these alternative specifications is not to change CFR-I’s original design and search for a suitable
specification; rather, these alternative specifications provide insight into whether the prior score correlation biases
the estimates obtained from the baseline specifications in CFR-I.

17See Appendix A for further details on the precise mechanics of this e↵ect.
18The first-stage coe�cient in this 2SLS regression is 0.97, as expected given that very few teachers follow their

students across grades.
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baseline estimate of 0.957. In the North Carolina data, Rothstein (2016, Appendix Table A8, Row

3) finds that the same no-followers specification reduces the coe�cient for lagged scores by about

50% as well, from 0.144 to 0.08, while the coe�cient for current scores remains relatively stable at

� = 1.00. These results show that simply excluding teachers who follow students when computing

mean VA eliminates most of the correlation with prior scores without changing the baseline estimate

of forecast bias appreciably.

2) Distinguishing Within-School and Between-School Switchers. Building upon the approach of

excluding teachers who follow students, in Column 3 of Table 4, we exclude all teachers who switch

across grades within the school when constructing mean VA in each cohort. Again, we instrument

for the change in actual mean VA with this modified change in mean VA excluding within-school

switchers. The 2SLS coe�cient on the change in teacher VA in a regression of current scores

is 0.968, not significantly di↵erent from our baseline. The 2SLS coe�cient for lagged scores is

0.031 and not significantly di↵erent from zero. This suggests that teachers who switch within the

school face shocks that also a↵ect their students’ prior performance (e.g., school-specific shocks).

We explore this point further in Column 4, where we define mean VA purely using teachers who

switch within the school – that is, the complement of the set of teachers used to define mean VA in

Column 3. Column 4 shows that instrumenting for the actual change in VA using only the variation

driven by within-school movement (including followers across adjacent grades) yields a much larger

coe�cient on prior scores of 0.258. Yet the coe�cient on current scores remains stable at 0.950,

implying that the correlation with lagged score has no bearing on the estimate of �. Together,

these specifications suggest that, at least in the New York data, much of the correlation between

prior scores and teacher VA is generated by correlated shocks at the school level that ultimately

have little or no impact on the estimates of forecast bias.

3) Accounting for School-Year-Subject Shocks. In Column 5 of Table 4, we include school-

subject-year fixed e↵ects (rather than school-year fixed e↵ects) and replicate the specification in

Column 2. This specification nets out school-year-subject shocks, which are highly statistically

significant in our data (p < 0.001). In this specification, we obtain an estimate of � = 0.942 for

current test scores and a coe�cient of �.023 for lagged scores. Rothstein (2016, Appendix Table

A8, Row 5) also estimates this specification and obtains a coe�cient for current scores of 1.03,

identical to his baseline estimate, and a statistically insignificant coe�cient for lagged scores of

0.05.

BKS (2016, Table 4) report analogous results in the Los Angeles data. For example, removing
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within-school switchers reduces the coe�cient on prior scores in their data to an insignificant

0.049, while the coe�cient on current scores remains at 0.963. The similarity of the results across

all three datasets suggests that these patterns are a robust feature of the data generating process

across school districts rather than a statistical anomaly in any one sample.

The central lesson of Table 4 is that the coe�cient on current scores (�) is very stable across

specifications that isolate di↵erent pieces of variation in teacher VA, while the coe�cient on prior

test scores fluctuates substantially. If the relationship with lagged scores in the baseline specification

did in fact reflect true di↵erences in student ability across cohorts, one would expect the estimates

of � to fall substantially when one isolates a source of variation in VA that is uncorrelated with

prior test scores. Therefore, these results imply that the correlation with lagged scores in the data

reflects spurious noise and does not bias CFR-I’s baseline estimates of �.

II.D Controlling for Prior Test Scores

Rothstein (2016, Section 3) argues that it is preferable to control for changes in lagged scores �A

t! 1

when regressing �A

t

on �VA

t

to estimate �. Although controlling for pre-determined prior scores

seems like it should improve estimates, in this subsection we show that controlling for �A

t! 1 will

typically increase bias in the estimate of � in this setting, for two reasons.

First, because much of the correlation between�A

t! 1 and�VA

t

is driven by teachers who follow

students across grades, lagged test scores are endogenous to changes in teacher VA. Including such

an endogenous control naturally generates bias because part of the causal e↵ect of �VA

t

is picked

up by �A

t! 1. The pitfalls of including endogenous controls – termed “bad controls” by Angrist

and Pischke (2009) – are well known and so we do not discuss them further here.

Second, controlling for �A

t! 1 creates bias when the correlation between �A

t! 1 and �VA

t

is

largely driven by transitory shocks rather than true di↵erences in student ability, as appears to be

the case empirically. To see this, let  denote the coe�cient from a regression of �A

t

on �A

t! 1; we

estimate  = 0.64 in our data, while Rothstein estimates  = 0.675. These large coe�cients arise

because the correlation between �A

t

and �A

t! 1 is driven mostly by variation in student ability

across cohorts, which is highly persistent, rather than transitory fluctuations in test scores.

Suppose the variation in �A

t! 1 that is correlated with �VA

t

is driven by transitory shocks

to prior test scores that have no impact on �A

t

, as in the examples in Table 2a and 2b. In

this case, the value of  that applies to the variation in �A

t! 1 that matters – i.e., the portion

that is correlated with �VA

t

– is  
C

= 0. Here, we know that the baseline OLS regression that
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does not control for �A

t! 1 yields a consistent estimate of �. Therefore, the omitted variable bias

formula implies that controlling for �A

t! 1 will yield an estimate of � that is downward-biased

by�� =- ✓, where ✓ denotes the coe�cient from a regression of �A

t! 1 on �VA

t

. In our baseline

specification, we estimate ✓ = 0.171 (Column 1 of Table 4, Panel B), while Rothstein estimates

✓ = 0.144. Controlling for �A

t! 1 when  

c

= 0 would therefore produce a downward bias of

�� =- ✓ ' �0.144 ⇥ 0.675 = �0.0973, matching the change in � of �0.097 that Rothstein finds

when controlling for lagged scores (Rothstein 2016, Table 3a, Columns 1 and 2). Intuitively, by

controlling for �A

t! 1, one falsely attributes part of the di↵erence in current test scores �A

t

to

di↵erences in student ability when those di↵erences are actually due to transitory shocks that enter

both �VA

t

and �A

t! 1 but have no bearing on �A

t

.

More generally, including �A

t! 1 as a control yields biased estimates of � if  
c

, the persistence

of the shocks that drive the correlation between �A

t! 1 and �VA

t

, di↵ers from  ' 0.66. The

examples and simulations above demonstrate that  
C

di↵ers from  as soon as one incorporates

empirically relevant features such as transitory school-year-subject shocks.

Of course, the fact that  
C

di↵ers from  does not necessarily mean that excluding �A

t! 1 from

the control vector (which is equivalent to assuming  
C

= 0) will yield unbiased estimates. Since

 

C

is unknown, the most definitive, non-parametric approach to assessing whether the correlation

between VA and lagged scores generates bias is to isolate sources of variation in teacher VA that

eliminate the correlation between �A

t! 1 and �VA

t

and evaluate whether the estimates of � change.

This is precisely what we did in Table 4 above. The fact that the estimates of � remain unchanged

in subsamples where �VA

t

is uncorrelated with �A

t! 1 directly shows that the correlation between

�VA

t

and �A

t! 1 in the baseline specification has no bearing on the estimate of �.

Building on this logic, the evidence in Columns 2-5 of Table 4 can be used to infer that  
C

is much closer to 0 than 0.66. In Panel C of Table 4, we calculate the predicted value of � that

one would obtain starting from the baseline estimates of � = 0.957 and ✓ = 0.171 in Column 1

of Table 4 under the dubious assumption that  
C

=  = 0.66. We compute these predictions

as �
p

= 0.957 � 0.66 ⇥ (0.171 � ✓), where ✓ is the coe�cient from the regression of �A

t! 1 on

�VA

t

reported in Panel B in each column. Because the relationship between �VA

t

and �A

t! 1

changes substantially across specifications, the predicted values assuming  
C

=  = 0.66 vary from

�

p

= 1.015 in Column 4 (where we use variation from within-school switchers) to �
p

= 0.829 in

Column 5 (where we exclude followers and use school-year-subject fixed e↵ects). Yet the actual

estimates of � in these specifications, shown in Panel A, hardly change (� = 0.950 vs. � = 0.942) –
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as one would expect if  
C

= 0. These empirical results are therefore much more consistent with the

view that  
C

= 0 than  
C

= 0.66, i.e. that the relevant variation in �A

t! 1 is driven by transitory

shocks rather di↵erences in student ability. It follows that excluding �A

t! 1 as a control – precisely

as in CFR’s baseline design – yields unbiased estimates whereas including it does not.

In sum, our application is very di↵erent from Rothstein’s (2016, p12) analogy to a randomized

experiment where one detects imbalance in predetermined covariates and attempts to correct for

this imbalance by controlling for the covariates ex-post. In our setting, we fully expect imbalance in

�A

t! 1 across school-grade-year cells with di↵erent values of �VA

t

because of the way in which VA

is estimated, as illustrated by our simulations. Because this imbalance is due to noise rather than

persistent di↵erences in student ability and because prior scores are partly endogenous to changes

in �VA

t

, controlling for �A

t! 1 yields biased estimates.

II.E Discussion

The analysis in this section has three important implications.

First, regressions of changes in prior test scores on changes in mean teacher VA can detect

“placebo e↵ects” even when the underlying research design is valid. Because teacher VA is estimated

using data from the same environment that students were previously in, serially correlated shocks

to test scores will enter both VA estimates and students’ performance in previous years.

Second, correcting for some obvious sources of such shocks – for instance, by dropping teachers

who follow students or excluding within-school switchers when estimating mean teacher VA –

eliminates the correlation between prior test scores and changes in current teacher VA but has

no significant e↵ect on the estimates of forecast bias in the New York, North Carolina, and Los

Angeles datasets. These results confirm that the prior score correlation has no bearing on empirical

estimates of forecast bias in practice. Note that these results should not be interpreted as implying

that the lagged score test becomes valid after implementing “corrections” such as dropping within-

school followers.19 The point is not that the quasi-experimental specification needs to be modified

to eliminate the correlation with prior test scores; it is that the prior test score “placebo test” is

invalid and should not be used to assess the research design.

Third, controlling for lagged test scores yields biased estimates of the e↵ects of teacher VA

because lagged scores are partly endogenous to current teacher VA (when some teachers follow

students) and because the variation in lagged scores appears to be primarily driven by noise rather

19For example, there could be correlated shocks across nearby schools, which would continue to create a spurious
correlation between teacher VA and prior scores even after removing within-school switchers.
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than persistent di↵erences in student ability.

The fundamental source of all of these issues is that, unlike in a standard treatment e↵ects

setting where the treatments are exogenously observed, the “treatment” in VA models is itself

estimated from the data. As a result, standard intuitions that prior values can be used to implement

placebo tests or that one can obtain consistent estimates by controlling for prior values fail.20

Of course, the fact that prior test scores do not provide any information about the validity of

CFR’s quasi-experimental design does not mean that the design is valid. Instead, it means that

one must use alternative tests to assess the validity of the design. In CFR-I, we implemented a

series of such diagnostic tests. For example, we showed that changes in teacher VA across cohorts

are uncorrelated with cross-cohort changes in parental characteristics such as income (see CFR-I

Table 3). We also analyzed the e↵ects of changes in teacher VA in a given subject (e.g., math) on

test scores in the other subject (e.g., English). We found that cross-cohort changes in mean teacher

VA in one subject are unrelated to changes in contemporaneous test scores in the other subject

when students have di↵erent teachers in the two subjects (CFR-I Table 4, Column 5). Moreover,

changes in prior test scores in the other subject are also uncorrelated with changes in mean teacher

VA in a given subject.

Parental characteristics and performance in other subjects are both very highly correlated with

students’ test scores, and hence are likely to pick up any latent di↵erences in student ability across

cohorts. The fact that di↵erences in teacher VA are uncorrelated with parental characteristics and

other-subject achievement therefore provides further evidence that the lagged score correlation in

own-subject achievement arises from spurious shocks that enter VA estimates rather than di↵erences

in latent student ability. Rothstein does not present any arguments as to why the alternative placebo

tests implemented by CFR-I fail to detect selection bias and are less credible than analyzing prior

scores. More generally, as we noted in CFR-I, the diagnostic tests show that any violation of

the teacher switchers design “would have to be driven by unobserved determinants of test scores

that (1) are uncorrelated with parent characteristics, (2) are unrelated to prior test scores and

contemporaneous test scores in the other subject, and (3) change di↵erentially across grades within

schools at an annual frequency. We believe that such sorting on unobservables is implausible given

the information available to teachers and students and the constraints they face in switching across

20This problem is not unique to the research design used by CFR; it applies to value-added models more generally.
For example, school-year shocks will induce a correlation between VA estimates and prior test scores in a cross-section
of classrooms – as documented e.g. in Rothstein (2010) – even if student unobservables are balanced across classrooms
(Chetty, Friedman, Rocko↵ 2016).
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schools at high frequencies.”

III Estimating Teachers’ Long-Term Impacts

The third issue raised in Rothstein (2016) concerns CFR-II’s estimates of teachers’ impacts on

students’ earnings. CFR-II report estimates using both OLS regressions and the quasi-experimental

teacher switching design. Rothstein obtains similar estimates in the North Carolina data when

examining comparable outcomes. However, he argues that both the OLS and quasi-experimental

estimates are upward biased, because of two separate issues.

First, Rothstein points out that CFR-II’s OLS regression estimates, like any OLS regression

estimates, can only be interpreted as causal e↵ects conditional on the assumption of selection on

observables (i.e., that the covariates in the regression fully account for any confounding factors).

We fully agree with this observation and emphasized on page 2 of CFR-II this is “a very strong

assumption.” Rothstein goes on to argue that CFR’s method of controlling for observables – which

uses within-teacher variation to identify the impacts of covariates – relies on particularly strong

assumptions. He proposes an alternative approach that uses between-teacher variation for identifi-

cation. In this section, we demonstrate using a Monte Carlo simulation that Rothstein’s estimator

yields biased results in a case where CFR-II’s approach yields consistent estimates. Moreover, while

our estimator is consistent under the assumptions laid out in CFR-II, we show that Rothstein’s

approach is internally inconsistent with the assumptions under which value-added is estimated.

Although Rothstein o↵ers no definitive evidence that the identification assumptions made in

CFR-II are violated, he is certainly correct to raise the possibility that the controls in our OLS

regressions might not adequately account for omitted variable bias. Recognizing this concern, we

reported estimates that do not rely on the assumption of selection on observables, instead using

our quasi-experimental teacher switching research design (CFR II, Section IV). We found that this

method yields very similar estimates of teachers’ long-term impacts to OLS for the outcomes for

which we have adequate precision (e.g., college attendance).

Rothstein finds similar results in data from North Carolina, but, returning to the issue of cor-

relations with prior test scores discussed in Section 2 above, he argues that the quasi-experimental

estimates of long-term impacts might be upward biased. He shows that one obtains smaller es-

timates of long-term impacts when controlling for prior scores. For the same reasons as those

discussed in the previous section, prior scores are improper controls that generate bias by atten-

uating the e↵ect of VA, and the switchers research design is valid as originally implemented in
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CFR-II. Moreover, even after controlling for prior scores, the quasi-experimental estimates in the

North Carolina data are statistically indistinguishable from estimates for comparable outcomes in

the New York data.

Based on this analysis, we conclude that both the New York and North Carolina data support

the hypothesis that teacher VA predicts teachers’ long-term impacts. At a minimum, there is no

evidence that the true impacts fall outside the confidence intervals reported in CFR-II.

We begin by summarizing Rothstein’s empirical evidence on long-term impacts in the North

Carolina data. We then address the issue of controlling for observables in OLS regressions and turn

to the quasi-experimental estimates.

III.A Evidence from North Carolina Data

Rothstein’s analysis of long-term impacts in North Carolina is not a direct replication of CFR-II

because it examines di↵erent outcomes. CFR-II examine teachers’ e↵ects on college attendance

rates and earnings, while Rothstein examines teachers’ impacts on a set of outcomes measured in

high school: graduation rates, plans to attend college, grade point average (GPA), and class rank.

We focus on the high school graduation and planned college attendance outcomes here because they

are most comparable to the outcomes in adulthood examined by CFR-II. Conceptually, teachers’

e↵ects on high school GPA and class rank could di↵er from their e↵ects on the other outcomes

for two reasons. First, a high VA teacher in elementary school might a↵ect the high school a

student attends or the classes a student takes – for instance, by inducing a student to take more

advanced courses – which could lead to ambiguous e↵ects on measured GPA and class rank. Second,

prior work has shown that the impacts of educational interventions “fade out” when examining

intermediate measures of academic achievement, only to re-emerge in adulthood (Deming 2009,

Chetty et al. 2011, CFR-II). Because of these reasons, it is not clear that teachers’ impacts on high

school grades or ranks should parallel their impacts on outcomes in adulthood.21

When replicating CFR-II’s OLS specification in the North Carolina data, Rothstein (2016,

Table 5, Column 2) finds that a 1 SD increase in teacher VA increases high school graduation rates

by 0.34 percentage points (s.e. = 0.04) and the fraction of children planning to attend college by

0.60 pp (s.e. = 0.07). When using CFR-II’s quasi-experimental design, Rothstein (2016, Table 6,

Column 2) obtains estimates of 0.38 pp (s.e. = 0.17) for high school graduation and 0.61 pp (s.e.

= 0.24) for planning to attend college. These findings are closely aligned with CFR-II’s results.

21Moreover, the GPA and class rank outcomes are missing for a majority of the students in the North Carolina
data, so the quasi-experimental estimates for these outcomes su↵er from an even greater lack of precision.
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As in CFR-II, Rothstein’s OLS and quasi-experimental estimates are very similar to each other.

Moreover, Rothstein’s estimate of the impact on the fraction of children who plan to attend college

is consistent with CFR-II’s estimate of 0.82 pp for actual college attendance.

Rothstein goes on to argue that both the OLS and quasi-experimental designs – which rely on

di↵erent sources of variation and identification assumptions – are biased, for di↵erent reasons. We

consider each of these two issues in turn.

III.B Controlling for Observables in OLS Regressions

CFR Two-Step Estimation Methodology using Within-Teacher Variation. We begin by reviewing

the two-step approach to controlling for observable student characteristics used in CFR-I to estimate

teacher value-added and CFR-II to estimate teachers’ long-term impacts. For simplicity, we focus

on a model without drift in teacher VA over time.

To estimate VA in CFR-I, we first construct student test score residuals, removing the e↵ects

of observable covariates. For student i in year t with teacher j, we first estimate the relationship

between test scores A#
it

and a vector of covariates X
it

using a fixed-e↵ects OLS regression

A

#
it

= ↵

j

+ �X

it

, (2)

where ↵
j

is a teacher fixed e↵ect. Because we include teacher fixed e↵ects, � is identified from

variation across students taught by the same teacher. We then calculate the residualized test score

A

it

= A

#
it

� �X

it

.

We use these residualized test scores to estimate VA µ̂

jt

using test score data from years excluding

t, and then define forecast bias based on the coe�cient from a univariate regression of the form:

A

it

= ↵

t

+ �#µ
jt

,

as in equation (10) of CFR-I.

In CFR II, we use a parallel two-step approach to estimate teachers’ long-term impacts. Con-

sider the following structural model for earnings Y #
i

, which is a simplified version of the model in

CFR-II (in equations (2) and (4) of the main text and (17) in CFR-II Appendix A) that ignores

tracking e↵ects and drift in teacher VA:

Y

#
i

= ↵+ ⌧

j

+ �

Y

X

it

+ ⌘

it

(3)
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where ⌧
j

represents teacher j’s earnings value-added in year t – i.e., teacher j’s direct impact

on earnings. A teachers’ earnings VA ⌧

j

may be correlated with her test-score VA µ

j

, but the

correlation may be imperfect.

Our goal is to estimate the e↵ect of a 1 unit increase in teacher’s test-score VA µ

j

on earnings,

which we denote by . To estimate , we first regress each long-term outcome such as earnings Y #
i

on

a vector of control variables, again including teacher fixed e↵ects to identify from within-teacher

variation across students:

Y

#
i

= ↵

j

+ �

Y

X

it

.

We then regress the residualized outcome variable Y

it

= Y

#
i

� �

Y

X

it

on teachers’ estimated test-

score VA based on data excluding year t (µ̂
jt

):22

Y

it

= ↵+ µ̂

jt

+ ⌘

it

(4)

without further controls. Under the assumption that ⌘
it

is orthogonal to µ

j

(Assumption 2 in

CFR-II), we can interpret  = Cov(Yit ,µ̂jt )
V ar(µ̂jt )

= Cov(⌧j ,µ̂jt )
V ar(µ̂jt )

as an estimate of the causal e↵ect of a

1 SD increase in a teacher’s test-score VA on her students’ earnings Y

it

. Note that unlike in a

standard partial-regression, we do not residualize the right hand size variable µ

j

with respect to

the covariates X

it

when regressing earnings residuals Y

it

on VA in (4). Doing so would yield an

inconsistent estimate of  because we estimated �Y from within-teacher variation (see Appendix B

for a proof).

The model for earnings in CFR-II and in (3) implies that the estimate of �Y that one obtains

from within-teacher variation in X

it

is equivalent to the estimate of �Y one would obtain from

between-teacher variation (holding fixed true teacher quality). This is because our model assumes

that di↵erences in X

it

lead to the same change in earnings for students taught by the same teacher

as those taught by di↵erent teachers. Rothstein questions whether this assumption holds in practice

and seeks to develop alternative estimators that do not rely on this assumption. Rothstein (2014,

2016) proposes two approaches to estimate  – a multivariable OLS regression and a 2SLS estimator

– that yield similar estimates. We consider each approach in turn.23

22For scaling purposes, CFR-II report the e↵ect of a 1 unit increase in normalized teacher VA, defining the inde-
pendent variable as m̂jt = !µjt /# µ where #µ is the variance of test-score VA. Because this just changes the coe�cient
estimates by a scalar, we simplify notation by writing the regressions as a function of !µjt in this note.

23Other researchers have also considered 2SLS estimators analogous to that proposed by Rothstein (2014). Because
the objective of this published exchange is to clarify the methodological issues that arise when estimating VA models
for other interested researchers, we retain our discussion of the 2SLS estimator in Rothstein (2014) even though it is
not included in Rothstein (2016).
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Multivariable Regression using both Within- and Between-Teacher Variation. Consider the fol-

lowing OLS regression of earnings on the test-score VA estimate µ̂

jt

and the covariate X

it

:

Y

#
i

= ↵+ 

R

µ̂

jt

+ �

Y

X

it

+ ⌘

it

(5)

Rothstein (2016, Table 5, Column 5) shows that this multivariable regression yields smaller esti-

mates of 
R

than those produced by the two-step estimator in (4) in the North Carolina data. The

estimated e↵ects on high school graduation and plans to attend college fall to 0.24 pp (s.e. = 0.04)

and 0.41 pp (s.e. = 0.06), respectively – about 30% smaller than the baseline estimates produced by

the two-step estimator. He argues that CFR’s approach therefore overstates the long-term impacts

of teachers.

Although intuitive at first glance, this multivariable regression in (5) does not yield a consistent

estimate of  because it does not control for di↵erences in teachers earnings VA ⌧

j

that are correlated

with X

it

and hence misestimates �Y . For example, suppose that students with higher lagged test

scores X

it

are assigned to teachers with higher earnings VA ⌧

j

. Because test score VA µ

j

is only

one component of earnings VA, the multivariable regression over-attributes explanatory power to

lagged test scores, yielding an upward biased estimate of �Y and a downward-biased estimate of



R

. Intuitively, part of the relationship between lagged test scores and earnings is due to the fact

that students with high prior test scores get teachers who have more positive e↵ects on earnings.

Since (4) does not fully control for teachers’ e↵ects on earnings, the coe�cient on lagged test scores

is upward-biased. This reduces the residual variation left to be explained by teachers’ test score VA

µ̂

jt

and thus yields a downward-biased estimate of .24 More generally, a multivariable regression

will underestimate the e↵ect of VA on long-term outcomes because it will over-attribute variation

in students’ outcomes to the X’s rather than teachers. Our approach of estimating �Y using within-

teacher variation was designed to resolve precisely this problem, as it mechanically eliminates any

conflation of the e↵ects of teachers with the e↵ects of the control variables.

To illustrate this problem, we report estimates based on Monte Carlo simulations in Table 5

(see Appendix C for the code underlying this simulation). We use a simple data-generating process

for scores and earnings in which teachers’ earnings VA ⌧

j

is correlated with a control variable X.

We assume that the true e↵ect of a 1 unit increase in VA on earnings is  = $100 and the true

e↵ect of a 1 unit increase in X is $10. Column 1 of Table 5 shows estimates from CFR’s approach

24Stated di↵erently, because test-score VA µ̂jt captures only one component of teachers’ earnings VA $j , the
multivariable regression in (5) is e↵ectively biased by measurement error in earnings VA that leads us to misestimate
%Y and &.
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of constructing residuals Y

it

using within-teacher variation and regressing these residuals on VA

estimates. As expected, we obtain an estimate of ̂ ' 100 using this approach. Column 2 shows

that in contrast, the multivariable regression in (5) yields an estimate of ̂ = 75, 25% lower than

the true . This is because the estimate of �Y is $66, higher than its true value of $10 because it

picks up teachers’ e↵ects on earnings.

Two-Stage Least Squares Estimates. To account for measurement error in test-score VA, Roth-

stein (2014) proposes the following regression specification, which replaces test-score VA µ̂

jt

with

test score residuals A
it

, using two-stage-least squares:

Y

#
i

= ↵+ 

IV

A

it

+ �

Y

X

it

+ ⌘

it

(6)

He instruments for a student’s test score residual A
it

with the test-score VA estimate µ̂

jt

. Column

3 of Table 5 replicates this 2SLS estimator and shows that it too yields a downward-biased estimate

of  and an upward biased estimate of �Y (̂ = 80, �̂Y = 54). Conceptually, this 2SLS estimator

does not fix the problem that teachers’ true earnings VA is correlated with the covariates and

thus continues to misestimate �Y . The 2SLS estimator is simply the reduced-form estimate in

(5) divided by the first-stage coe�cient from a regression of A
i

on µ̂

jt

and X

it

, which we denote

by �. In our simulation, � = 0.94, and hence 
IV

= 

R

/0.94 is similar to the OLS estimate and

substantially biased relative to the truth. More generally, the 2SLS estimator will yield a consistent

estimate of  only if � = 

R

/, and there is no reason for this equality to hold. Intuitively, the 2SLS

estimator accounts for the e↵ect of measurement error in estimating test-score VA, but it does not

account for the fact that teachers’ total earnings VA is not properly measured and controlled for

in the multivariable regression. Hence, part of the e↵ect of teacher VA is still attributed to X

it

in

the 2SLS regression. These results demonstrate that Rothstein’s (2014, p29) statement that the IV

estimator is “consistent under more general conditions than the restrictive assumptions required

for consistency of CFR’s two-step estimator” is not correct. On the contrary, it is not consistent

under even the assumptions required for CFR’s estimator.

Internal Consistency. A further conceptual problem with the multivariable regression in (5),

whether estimated using OLS or 2SLS, is that it is inconsistent with the way in which teachers’

test score VA µ̂

jt

is estimated. As noted above, in CFR-I we residualize student test scores using

within-teacher variation to estimate the vector of coe�cients on the controls. This approach again is

designed to account for the fact that the covariates vary across teachers, and hence using the pooled

variation to construct test score residuals would lead us to overstate the e↵ects of the covariates on
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test scores.25

Rothstein’s approach to estimating long-term e↵ects introduces an asymmetry between the way

long-term impacts are estimated and teacher VA is estimated. If there are indeed significant di↵er-

ences in the within-teacher and between-teacher relationships between X and student’s outcomes,

then one cannot use within-teacher variation to residualize student test scores and estimate teacher

VA to begin with. Since Rothstein’s VA estimates are based on the methodology of CFR-I, his

approach to estimating teachers’ long-term impacts is internally inconsistent with his VA estimates.

That is, VA is estimated under the assumption that the structural relationship between covariates

and student outcomes is the same within and between teachers, but long-term impacts are esti-

mated under the assumption that the two relationships di↵er. Regardless of which assumption one

believes is correct, one cannot make di↵erent assumptions in di↵erent parts of the analysis.26

In sum, our two-step method yields an unbiased estimate of the e↵ect of teacher VA on long-

term outcomes () under the assumptions of the model we specify in CFR-I and II, whereas the

multivariable regression approach does not. Nevertheless, we still fully agree with Rothstein on the

bigger-picture point that our OLS regression estimates rely on strong assumptions. The assumption

that within-teacher and between-teacher variation yield similar e↵ects of covariates on outcomes

might not hold in practice, just as the assumption that selection on observables given the covariates

we use may not hold in practice. Conceptually, we are just assuming a particular form of selection

on observables, and as we stressed in CFR-II, the OLS regression estimates can only be interpreted

as causal e↵ects if this assumption holds. The only way to evaluate the validity of this assumption

is to use a research design that generates variation in VA orthogonal to observables. In the case of

test scores, the fact that our quasi-experimental tests generate a prediction coe�cient of � ' 1 (no

forecast bias) implies that our method of controlling for observables using within-teacher variation

yields unbiased estimates of teachers’ impacts of test scores. We can evaluate whether the same

holds for outcomes such as college attendance by using the quasi-experimental design to estimate

the long-term impacts of teacher VA, which we turn to next.

25For example, if minority students tend to have lower-VA teachers, then we would over-estimate the e↵ects of race
on test scores if we did not include teacher fixed e↵ects when estimating the relationship between race and test scores
using (2), because part of the coe�cient on race would include the e↵ects of teacher quality.

26Rothstein (2014, p28) suggests that one solution to this problem is to estimate VA conditional on covariates,
which is analogous to using both within- and between-teacher variation to residualize both test scores and earnings.
We pursued this approach in the working paper version of CFR-II (NBER wp 17699). In that paper, we obtained
estimates of long-term e↵ects of teacher VA that were roughly similar to those reported in the published version
of CFR-II. However, as Rothstein noted in his original referee report on CFR-II, this approach to residualization
using pooled variation does not yield consistent estimates of teacher e↵ects, which is why we changed our estimation
methodology in the revision.
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III.C Quasi-Experimental Estimates

In Table 5 of CFR-II, we report estimates of teachers’ e↵ects on college attendance rates using our

cross-cohort teacher switchers design. We find that these estimates of the long-term e↵ects of VA

are quite similar to the OLS estimates. The estimated impact of a 1 SD increase in teacher VA on

college attendance rates is 0.82 pp using OLS (CFR-II, Table 2) compared with 0.86 pp using the

quasi-experimental design. As noted above, Rothstein finds that the quasi-experimental estimates

match the OLS estimates in the North Carolina data as well.

However, Rothstein argues that the cross-cohort estimates of teachers’ long-term impacts are

biased for the same reason as in Section II above: changes in teacher VA are correlated with prior

test scores. Controlling for prior scores in the quasi-experimental design, the estimated e↵ect on

high school graduation falls from 0.38 pp to 0.26 pp (s.e. = 0.17) and the estimated e↵ect on plans

to attend college falls from 0.61 pp to 0.41 pp (s.e. = 0.24) (Rothstein 2016, Table 6, Columns 2

and 3). Based on these findings, Rothstein concludes that “no strong basis for conclusions about

the long-run e↵ects of high- vs. low-VA teachers, which in the most credible estimates are not

distinguishable from zero.”

We disagree with this conclusion for two reasons. First, following exactly the same reasoning

as in Section II.D, the estimates that control for prior test scores are inconsistent because part of

the e↵ect of changes in VA is incorrectly attributed to di↵erences in prior test scores, which appear

to be driven by noise rather than persistent di↵erences in students’ ability. CFR-II present a set

of alternative specification tests that do not su↵er from the problems inherent in controlling for

prior test scores. For example, they show that changes in leads and lags of teacher VA for adjacent

cohorts do not predict changes in long-term outcomes (CFR-II, Figure 6) and that changes in

predicted outcomes based on parental characteristics are uncorrelated with changes in teacher VA

across cohorts (CFR-II, Table 5, Column 5). As in his critique of CFR-I, Rothstein does not explain

why these alternative diagnostic tests implemented by CFR-II fail to detect selection bias and are

less credible than analyzing prior scores.

Second, even if one takes the estimates with prior controls at face value, they are not statisti-

cally distinguishable from Rothstein’s baseline estimates or from CFR-II’s estimates for the college

attendance outcome. Although the point estimates are about 30% smaller than the baseline es-

timates obtained without prior score controls, they di↵er from those estimates by less than one

standard error. Thus, the fact that they “are not distinguishable from 0” as Rothstein emphasizes
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is simply a statement about the lack of statistical power in Rothstein’s sample rather than evidence

that teachers’ long-term e↵ects are actually close to 0.

III.D Discussion

Stepping back from the details of the estimation procedure, our reading is that Rothstein’s findings

strongly support the view that teachers have substantial long-term impacts on high school gradua-

tion rates and plans to attend college, the outcomes most comparable to those studied by CFR-II.

All of Rothstein’s OLS specifications yield highly significant positive estimates for the impacts of

teacher VA on these outcomes. Rothstein’s baseline quasi-experimental specifications also yield

significant positive estimates that match his OLS estimates, while his estimates that control for

prior scores yield positive estimates that are not distinguishable from the baseline results.

In our view, the similarity of the quasi-experimental and OLS estimates in both the New York

and North Carolina data constitutes particularly strong evidence that high-VA teachers create

substantial long-term gains. Because the two estimates rely on entirely di↵erent sources of variation

and identification assumptions, it would be surprising if they were both biased yet happened to

yield such similar results.

Rothstein’s preferred point estimates for these outcomes are about 30% smaller than the es-

timates he obtains when using CFR-II’s specifications. But such di↵erences in magnitudes fall

within the confidence intervals for the quasi-experimental estimates of long-term impacts reported

in CFR-II. Even if teachers’ true long-term impacts are in fact 30% smaller than suggested by CFR-

II’s point estimates, it would not alter CFR’s main qualitative conclusion that high-VA teachers

improve their students’ outcomes in adulthood substantially.

IV Conclusion

Rothstein (2016) provides an exceptionally thorough replication and re-examination of CFR-I and

II that is a very useful contribution to the literature on teacher e↵ectiveness. However, his three

central critiques of CFR’s methodology are not valid: his preferred method of imputing teacher

VA generates bias, his proposed prior score placebo test falsely rejects valid research designs, and

his alternative method of controlling for covariates yields inconsistent estimates of teachers’ long-

term e↵ects. Excluding these incorrect results, his findings support – and in fact nearly duplicate

– the results reported in CFR. Although we disagree with his conclusions, we are very grateful

to Rothstein for helping us improve our own understanding of these issues through his insightful
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comments and questions both in his formal referee reports and this followup response.

We conclude with two broader points about this debate. First, from an empirical perspective,

Rothstein proposes parametric solutions for each potential problem he uncovers: imputation of

missing data, adding a control for prior test scores, or changing the control vector in OLS regressions

to estimate teachers’ long-term impacts. These parametric approaches rely on strong assumptions

that may not hold in practice, and in fact generate significant bias under plausible assumptions.

We believe a better way forward, both in the current debate and in future work, is to obtain more

definitive evidence using “non-parametric” methods that do not rely on such assumptions. For

instance, in the cases of Rothstein’s three critiques, we focus on samples with no missing data,

isolate variation in teacher VA that generates no correlation with prior test scores, and use the

quasi-experimental teacher switching design to estimate long-term e↵ects. These non-parametric

tests do not uncover any problems in CFR’s methodology. Our view is that parametric approaches

are undesirable unless one has an explanation for why the non-parametric evidence is flawed (e.g.,

why subsamples with no missing data exhibit no forecast bias).

Second, the broad message we take from recent work is that forecast bias in standard value-

added models is small, even if the exact magnitudes di↵er across studies. CFR-I estimate forecast

bias of approximately 5% in New York and BKS (2016) estimate forecast bias of approximately 3-5%

in Los Angeles. Experiments in which students are randomly assigned to classrooms also find little

forecast bias (Kane and Staiger 2008, Kane et al. 2013). Even Rothstein’s own analysis – setting

aside our disagreements about methodology – yields estimates of forecast bias of approximately

5-15% across the specifications he explores. In sum, all of these studies imply that policies which

select teachers on the basis of their estimated VA would achieve at least 85% of the gains one would

expect if VA were unbiased.27 The literature therefore paints a consistent picture showing that VA

metrics provide useful information about teachers’ impacts on students’ outcomes.

At this point, our view is that resolving the exact amount of forecast bias in VA estimates

is of secondary importance relative to other questions in the policy debate on VA measures. For

example, studying how the properties of VA measures change when they are used in high-stakes

settings and understanding how VA can be combined with other measures of teacher quality (such as

classroom observations or principal ratings) to measure teachers’ long-term impacts more accurately

are critical issues that remain to be resolved in future research.
27Rothstein argues that the estimates from these studies di↵er to a larger degree by focusing on “teacher-level”

bias instead of forecast bias. However, as we discussed in the introduction, all of the studies in question estimate
only forecast bias, not teacher-level bias. Hence, we view forecast bias as the relevant measure for comparisons.
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Online Appendix A. Teacher Followers and Prior Scores

In this appendix, we provide further detail on why including teachers who follow students across

grades can produce correlations between changes in current VA and prior test scores across cohorts.

Consider the relationship between changes in math test scores and math teacher VA from 1994

to 1995 in 5th grade in a given school. Suppose a teacher with high estimated VA leaves 5th grade

after 1994 and is replaced by a teacher with average VA; assume there are no other changes in the

teaching roster. We know that the high-VA teacher who departed did not teach the children who

were in grade 5 in 1995 when they were in 4th grade in 1994 (because she taught 5th grade in

1994). However, she may have taught the children who were in grade 5 in 1994 when they were in

4th grade in 1993. As a result, the high VA of the departing teacher is positively correlated with

lagged test scores of the cohort that reaches 5th grade in 1994, but not the test scores of those who

reach 5th grade in 1995. This e↵ect makes lagged (4th grade) test scores fall on average across the

two cohorts. Since (by construction) teacher VA is also falling in this example, there is a positive

correlation between changes in lagged (4th grade) scores across the two cohorts and mean teacher

VA.

It is useful to distinguish between two separate channels that drive this correlation. The first

channel is fluctuations in student test scores that are not related to the persistent component of

teacher value-added, i.e., noise in student test scores. The teachers in 5th grade in 1994 could have

higher estimated VA simply because her students in 4th grade test in 1993 did particularly well

by chance (e.g., because the curriculum in the school happened to be well aligned with the test

questions that year). This creates a mechanical correlation between lagged scores and VA estimates

but has no bearing on our estimate of forecast bias using current test scores. Second, the correlation

could be driven by teacher treatment e↵ects. If the 5th grade teachers in 1994 were of truly high

quality, they would a↵ect the performance of 4th graders in 1993 (because some of them taught

4th grade in 1993), but not the 4th graders in 1994 (because we know they are teaching 5th grade

in 1994). Note that, in contrast to the first channel, the direct treatment e↵ect of teachers in prior

grades could potentially bias our estimate of �, as having better teachers in prior school years can

increase current scores. The magnitude of bias depends upon the rate of fade-out in the sample

where a teacher teaches the same child twice. The fact that the estimates of � do not change when

we exclude followers (Columns 1 and 2 of Table 4) shows that in practice, there is little or no bias

in our estimate of � from this latter channel.



Online Appendix B. Residualization Using Within-Teacher Variation

In a standard partial-regression implementation of a multivariate regression model, one must

residualize both the left- and right-hand side variables with respect to the covariates to obtain a

consistent estimate of the regression coe�cient of interest. In this appendix, we show why one

should not residualize the right hand size variable (teacher VA) with respect to covariates Xit when

the e↵ects of the covariates on long-term outcomes Y ⇤
it are estimated using within-teacher variation.

Suppose the statistical model for earnings is

Y

⇤
i = ↵+ mj + �

Y
Xit+}⌘it, (1)

with ⌘it orthogonal to Xit and mj defined as normalized teacher VA, as in equations (2) and (4) in

CFR-II.

First, observe that if we knew �

Y , we could mechanically construct Yit = Y

⇤
i � �

Y
Xit and

then simply regress Yit on mj (without including any controls) to obtain an unbiased estimate of 

under the selection on observables assumption in CFR-II (Assumption 2). In this case, residualizing

value-added mj with respect to Xit would not yield a consistent estimate of  because the true

model is Yit = ↵+ mj + ⌘it.

Now suppose that we do not know �

Y and estimate it using an OLS regression (without teacher

fixed e↵ects) of the form

Y

⇤
i = a+ b

Y
Xit + "it.

Here b

Y does not provide a consistent estimate of �Y if teacher VA mj is correlated with Xit: b

Y

converges to �

Y +Cov(mj , Xit)/V ar(Xit). Since bY is not a consistent estimate of �Y , one cannot

simply regress Y

⇤
i � b

Y
Xit on mj to obtain a consistent estimate of . Intuitively, the reason one

must residualize both Yit and mj in a multivariate regression is that an OLS regression of Yit on

Xit does not produce a consistent estimate of the structural parameter �Y in (1) because it partly

picks up the e↵ect of mj , which is correlated with Xit. To correct for the incorrect estimate of

�

Y , one must residualize the right-hand-side variable mj with respect to Xit and then regress the

earnings residuals Yit on the VA residuals m̃jt = mj � �Xit.

Now consider our approach, where we estimate �

Y using an OLS regression with teacher fixed

e↵ects aj :

Y

⇤
i = aj + b

Y
f Xit + "

0
it.

Here, the coe�cient bYf is identified purely from within-teacher variation in Xit that is mechanically

uncorrelated with variation in mj . Therefore, under the model in (1), the coe�cient bYf converges



to �

Y and hence regressing Y

⇤
i � b

Y
f Xit on mj yields a consistent estimate of , for the same reason

that regressing Y

⇤
i � �

Y
Xit on mj when �

Y is known yields a consistent estimate of  in the first

case considered above. In contrast, using residual VA m̃jt = mj � �Xit in the second regression

would yield an inconsistent estimate of . Intuitively, when we use within-teacher variation to

estimate �Y , we immediately obtain a consistent estimate of the e↵ect of X on earnings that is not

contaminated by the correlation with teacher value-added. Hence, one simply has to regress the

outcome residual on VA to estimate the e↵ect of teacher VA in the second stage.



Online Appendix C. Stata Code for Simulations 
 
 
Imputation of Missing Data 
 
1 
2 **************** 
3 * This simulation shows that imputing zeros reduces the coefficient in the 
regression of changes in scores on changes in mean VA when VA is correlated 
across teachers in a cell 
4 **************** 
5 
6 clear all 
7 
8 *1 Generate data at the school-year-teacher level 
9 set obs 1000000 
10 set seed 5071788 
11 g year = mod(_n-1,2)+1 
12 g teacher = ceil(_n/2) 
13 g school = ceil(teacher/2) 
14 
15 *2 Generate correlated VA within cells 
16 global corr = 0.2 
17 tsset teacher year 
18 g va = rnormal(0,.1) if year == 1 
19 replace va = (${corr}*l.va + sqrt(1-${corr}^2)*rnormal(0,.1)) if year == 2 
20 
21 *3 Generate missing data 
22 g rand = runiform() 
23 g miss = rand<.2 
24 g va_miss = va 
25 replace va_miss = . if miss==1 
26 
27 *4 Generate scores 
28 g score = va + rnormal(0,1) 
29 g score_miss = score 
30 replace score_miss = . if va_miss == . 
31 
32 *5 Imputation of 0 for missing data 
33 g va_impute = va_miss 
34 replace va_impute = 0 if va_miss == . 
35 
36 *6 Collapse to school-year and run regressions 
37 collapse va va_miss va_impute score score_miss, by(school year) 
38 tsset school year 
39 
40 *7 Results 
41 log using imputation.smcl, replace 
42 
43 _eststo clear 
44 _eststo Full_Sample: reg d.score d.va // Coefficient in full sample 
(ideal data) 
45 _eststo No_Missing: reg d.score_miss d.va_miss // Coefficient on subsample 
with no missing data 
46 _eststo Impute_0s: reg d.score d.va_impute // Coefficient with imputation 



is downward-biased 
49 esttab _all, mtitles title("Missing Data Imputation Simulation Results") 
se not 
50 log close 

 

Prior Test Scores (Table 3) 
 

1 *This simulation shows that prior test score changes with be correlated 
with changes in current mean VA across cohorts when there are school-year 
level shocks 
2 *Simulates data for one subject, so shocks should be interpreted as school-
year-subject shocks 
3 *The program simulates class-level data, incorporating teacher effects, 
class effects, student-level noise, and a school-year shock common to all 
classrooms. 
4 
5 clear all 
6 set seed 717806 
7 set more off 
8 
9 * Parameters governing simulation 
10 global min_grade = 3 // Minimum grade level (for readability) 
11 global min_year = 1992 // Start year (for readability) 
12 global n_school = 10000 // Number of schools 
13 global n_year = 6 // Number of years 
14 global n_grade = 6 // Number of grades taught per school 
15 global n_rooms = 4 // Number of classrooms per school and grade 
16 global n_class = 25 // Number of students per class 
17 global var_tot = 0.25 // Total variance of scores 
18 global sd_va = 0.10 // Standard deviation of value added 
19 global sd_class_shock = 0.08 // Standard deviation of classroom-level 
shocks 
20 global sd_sy_shock = .08 // Standard deviation of school-by-year shocks 
21 global rho_sy = 0.35 // Autocorrelation on school-by-year shocks 
22 
23 * Generate basic data 
24 set obs `= ${n_school} * ${n_grade} * ${n_rooms} * ${n_year}' 
25 g school = ceil(_n / (${n_grade} * ${n_rooms} * ${n_year})) 
26 g grade = mod(ceil(_n / (${n_rooms} * ${n_year})) - 1 , ${n_grade}) + 
${min_grade} 
27 g teacher = ceil(_n / ${n_year}) 
28 g year = mod(_n - 1, ${n_year}) + ${min_year} 
29 g id = rnormal() 
30 
31 * Replace some teachers in 1997 
32 * Only in grades 5-8 (since others not used in experiment at end) 
33 g replacement = mod(teacher , ${n_rooms}) < 1 if year == ${min_year} 
34 replace replacement = replacement[_n-1] if year > ${min_year} 
35 replace grade = grade - 1 if replace == 1 & year >= 1997 
36 replace school = mod(school , ${n_school}) + 1 if grade == 
(${min_grade}+1) & year >= 1997 & replace == 1 
37 replace grade = ${min_grade} + ${n_grade} - 1 if grade == (${min_grade}+1) 
& year >= 1997 & replace == 1 
38 replace grade = grade + 1 if replace == 1 & year >= 1997 & grade < ( 



${min_grade}+1) 
39 
40 * Generate true VA and class shocks 
41 g class_shock = rnormal(0, ${sd_class_shock}) 
42 g va_true = rnormal(0,${sd_va}) if year==${min_year} 
43 replace va_true = va_true[_n-1] if va_true==. 
44 
45 * Generate average lagged true VA and average lagged class shocks as 
"double lags" of true 
VA and class shocks 
46 sort school year grade id 
47 g temp1 = va_true[_n - ${n_rooms} * (${n_grade} + 1)] if year > 
${min_year} & grade > ${min_grade} 
48 g temp2 = temp1[_n - ${n_rooms} * (${n_grade} + 1)] if year > ${min_year} 
& grade > ${min_grade} 
49 g temp3 = class_shock[_n - ${n_rooms} * (${n_grade} + 1)] if year > 
${min_year} & grade > ${min_grade} 
50 g temp4 = temp3[_n - ${n_rooms} * (${n_grade} + 1)] if year > ${min_year} 
& grade > ${min_grade} 
51 by school year grade: egen l_va_true = mean(temp1) 
52 by school year grade: egen l2_va_true = mean(temp2) 
53 by school year grade: egen l_class_shock = mean(temp3) 
54 by school year grade: egen l2_class_shock = mean(temp4) 
55 drop temp* 
56 
57 * Generate school-by-year shocks 
58 g sy_shock = rnormal(0 , ${sd_sy_shock} * sqrt(1 - ${rho_sy}^2)) if mod(_n 
,${n_rooms} * ${n_grade}) == 1 
59 replace sy_shock = sy_shock / sqrt(1 - ${rho_sy}^2) if year == 
${min_year} & ~missing(sy_shock) 
60 replace sy_shock = sy_shock[_n - 1] if missing( 
sy_shock) 
61 replace sy_shock = sy_shock + ${rho_sy} * sy_shock[_n - ${n_rooms} * 
${n_grade}] if year > 
${min_year} 
62 g l_sy_shock = sy_shock[_n - ${n_rooms} * ${n_grade}] if year > 
${min_year} 
63 g l2_sy_shock = sy_shock[_n - 2 * ${n_rooms} * ${n_grade}] if year > ( 
${min_year} + 1) 
64 
65 * Generate classroom average score, lagged, and twice-lagged scores 
66 global sd_indv = sqrt((${var_tot} - ${sd_va}^2 - ${sd_sy_shock}^2 - 
${sd_class_shock}^2) / 
${n_class}) 
67 g l2_score = (l2_va_true + l2_sy_shock + l2_class_shock + 
rnormal(0,${sd_indv})) 
68 g l_score = l_va_true + l_sy_shock + l_class_shock + rnormal(0,${sd_indv}) 
69 g score = va_true + sy_shock + class_shock + rnormal(0,${sd_indv}) 
70 
71 *Make dataset balanced panel 
72 replace l_score = . if l2_score == . 
73 replace score = . if l_score == . 
74 
75 * Residualize scores using a single lag 
76 sort teacher year 
77 sum score 
78 global tot_var = r(Var) 



79 tsset teacher year 
80 corr score l.score, c 
81 global teach_var = r(cov_12) 
82 global ind_var = (${n_class} / (${n_class} - 1)) * (${var_tot} - 
${tot_var}) 
83 global class_var = ${var_tot} - ${ind_var} - ${teach_var} 
84 
85 * Construct leave-two-out shrinkage and VA estimate 
86 g temp = ~inrange(year , 1996 , 1997) & ~missing(score) 
87 by teacher: egen temp1 = sum(temp) 
88 g shrinkage = ${teach_var} / (${teach_var} + ${class_var} / temp1 + 
${ind_var} / (${n_class} 
* temp1)) 
89 g temp2 = score if ~inrange(year , 1996 , 1997) & ~missing(score) 
90 by teacher: egen temp3 = mean(temp2) 
91 g va = temp3 * shrinkage if inrange(year,1996,1997) 
92 drop temp* 
93 
94 * Construct Rothstein (2016) leave-three-out shrinkage and VA estimate 
95 g temp = ~inrange(year , 1995 , 1997) & ~missing(score) 
96 by teacher: egen temp1 = sum(temp) 
97 g shrinkage_3out = ${teach_var} / (${teach_var} + ${class_var} / temp1 + 
${ind_var} / ( 
${n_class} * temp1)) 
98 g temp2 = score if ~inrange(year , 1995 , 1997) & ~missing(score) 
99 by teacher: egen temp3 = mean(temp2) 
100 g va_3out = temp3 * shrinkage_3out if inrange(year,1995,1997) 
101 drop temp* 
102 
103 * Construct prior shrinkage and VA estimate 
104 g temp = (year < 1997) & ~missing(score) 
105 bys teacher: egen temp1 = sum(temp) 
106 g shrinkage_prior = ${teach_var} / (${teach_var} + ${class_var} / temp1 + 
${ind_var} / ( 
${n_class} * temp1)) 
107 g temp2 = score if (year < 1997) & ~missing(score) 
108 bys teacher: egen temp3 = mean(temp2) 
109 drop temp* 
110 
111 save vam_simulation, replace 
112 
113 * Collapse data to school-grade-year level to implement quasi-
experimental analysis 
114 keep if inrange(year,1996,1997) 
115 collapse score l_score va va_3out va_true, by(school grade year) 
116 egen sy = group(school year) 
117 egen sg = group(school grade) 
118 tsset sg year 
119 save vam_simulation_collapse, replace 
120 
121 * Results 
122 log using lagged_score_simulation.smcl, replace 
123 eststo clear 
124 _eststo d_score: qui reg d.score d.va 
125 _eststo d_score_sy: qui reg d.score d.va , a(sy) 
126 _eststo d_score_3out: qui reg d.score d.va_3out 
127 _eststo lag_d_score: qui reg d.l_score d.va 



128 _eststo lag_d_score_sy: qui reg d.l_score d.va , a(sy) 
129 _eststo lag_d_score_3out: qui reg d.l_score d.va_3out 
130 esttab _all, mtitles title("Quasi-Experimental Forecast Bias Estimates") 
se not 
131 log close 
 

Long-Term Effects of VA (Table 5) 
 

1 *This simulation shows that estimates of long-term impacts are downward-
biased in a multi-variable regression because VA is estimated with error and 
is correlated with X 
2 
3 clear all 
4 
5 *Specify target: true effect of 1 unit increase in va_score on earnings 
6 *Note that this is equivalent to effect of 1 unit increase in mu (not m = 
mu/sd(mu)) 
7 global true_coeff = 100 
8 
9 *************************PART 1********************** 
10 ********************Generate data******************** 
11 ***************************************************** 
12 
13 set obs 1000000 
14 global n_class = 20 
15 global classes_per_teach = 10 
16 g class = ceil(_n/$n_class) 
17 g teacher = ceil(_n/(${n_class}*${classes_per_teach})) 
18 
19 *Generate test-score VA (mu_j) 
20 bys teacher: g temp = _n 
21 g temp1 = rnormal(0,0.1) if temp == 1 
22 bys teacher: egen va_score = mean(temp1) 
23 
24 *Generate pure earnings component of VA 
25 g temp2 = rnormal(0,0.1) if temp == 1 
26 bys teacher: egen va_earn = mean(temp2) 
27 drop temp* 
28 
29 *Generate total earnings VA (tau_j) 
30 g va_comb = va_score + va_earn 
31 
32 *Generate covariate X correlated with teacher's total earnings VA 
33 global rho = 0.33 
34 g x = (${rho}*va_comb + (1-${rho})*rnormal(0,0.1))/sqrt(${rho}^2+(1-
${rho})^2) 
35 
36 *Generate scores and earnings 
37 *Note that only va_score affects test scores, while both va_score and 
va_earn affect earnings 
38 g score = va_score + x + rnormal(0,sqrt(1-.1^2)) 
39 g earn = ${true_coeff}*va_comb + 10*x + rnormal(0,10) 
40 
41 ***********************PART 2. ********************* 
42 **Estimate VA using within-teacher residualization** 



43 **************************************************** 
44 
45 * Residualize scores using within teacher variation as in CFR (2014b) 
46 qui areg score x, a(teacher) 
47 predict score_res, dr 
48 
49 * Estimate teacher-level variance 
50 preserve 
51 collapse score_res, by(teacher class) 
52 tsset teacher class 
53 qui corr score_res l.score_res, c 
54 global teach_var = r(cov_12) 
55 restore 
56 
57 * Estimate residual variance and shrinkage 
58 sum score_res 
59 global tot_var = r(Var) 
60 global ind_var = ${tot_var} - ${teach_var} 
61 scalar shrinkage = ${teach_var}/(${teach_var} + ${ind_var}/(${n_class} * ( 
${classes_per_teach}-1))) 
62 
63 * Estimate Leave-Out VA 
64 bys teacher: egen temp = mean(score_res) 
65 bys teacher class: egen temp1 = mean(score_res) 
66 g va = (${classes_per_teach}*temp - temp1)/(${classes_per_teach}-1) 
*shrinkage 
67 drop temp* 
68 
long_term_controls_simulation - Printed on 2/4/2015 9:33:20 PM 
Page 2 
69 *Confirm that regressing test score residuals on VA gives a coeff of 1 
70 reg score_res va 
71 
72 ***********************PART 3**************************** 
73 **Alternative Estimators of Teachers' Long-Term Effects** 
74 ********************************************************* 
75 
76 log using long_term_controls_simulation.smcl, replace 
77 
78 ***Column 1. Estimate long-term effects using two-step residualization as 
in CFR (2014b) 
79 *Yields correct estimate of long-run effects as expected 
80 qui areg earn x, a(teacher) 
81 predict earn_res, dr 
82 reg earn_res va, cl(teacher) 
83 
84 ***Column 2. Estimate long-term effects using multivariable regression as 
in Rothstein (2016) 
85 *Yields attenuated coefficient as expected 
86 reg earn va x, cl(teacher) 
87 
88 *Column 3: Rothstein (2014) 2SLS estimator yields estimate similar to OLS 
in #3 
89 ivreg earn (score_res = va) x 
90 
91 *Note: This is because first stage coef is very close to 1 
92 reg score_res va x 



93 
94 *Column 4: Rothstein (2014) OLS multivariable estimator yields correct 
estimate if we are able to control for (unobserved) true earnings VA 
95 reg earn va_comb x 
96 
97 log close 
 



Full Sample 
Excluding 

Teachers with 
Missing VA

Sch-Gr-Subj. 
Cells with No 
Missing Data

Cells with < 25% 
Missing Data, 
Imputing 0's to 
Missing Data

Full Sample, 
Imputing 0's to 
Missing Data

(1) (2) (3) (4)

Change in Mean VA across Cohorts 0.974 0.990 0.952 0.877
 (0.033) (0.045) (0.032) (0.026)

Grades 4 to 8 4 to 8 4 to 8 4 to 8

N. Sch. x Grades x Subject x Year Cells 59,770 17,859 38,958 62,209

Percent of Obs. With Non-Imputed VA 100.0 100.0 93.8 83.6

Change in Mean VA across Cohorts 1.097 1.081 1.100 0.936
 (0.022) (0.043) (0.035) (0.022)

Grades 3 to 5 3 to 5 3 to 5 3 to 5

N. Sch. x Grade x Subject x Year Cells 79,466 23,445 34,495 91,221

Percent of Obs. With Non-Imputed VA 100.0 100.0 94.4 72.6

Change in Mean VA across Cohorts 1.030 0.973 0.993
 (0.044) (0.048) (0.049)

Grades 4 to 8 4 to 8 4 to 8

N. Sch. x Grade x Subject x Year Cells 14,186 8,974 14,292

Percent of Obs. With Non-Imputed VA 100.0 100.0 92.0

Notes: This table presents estimates from regressions of the change in mean test scores across consecutive
cohorts within a school-grade-subject cell on changes in mean teacher value-added (VA). Panel A replicates
estimates reported in CFR-I (2014, Tables 4 and 5), while Panel B replicates results from Rothstein (2016,
Appendix Tables A4 and A5), and Panel C replicates results from Bacher-Hicks, Kane, and Staiger (2016, Table
3). Column 1 restricts the sample to students with non-missing teacher VA. Column 2 restricts the sample to
school-grade-year cells with no missing teacher VA. Column 3 restricts the sample to school-grade-year cells
where VA is missing for less than 25% of the observations, imputing VA of 0 to teachers with missing VA. Column
4 uses the full sample, imputing VA of 0 to teachers with missing VA. All specifications include year fixed effects.
See notes to Tables 4 and 5 of CFR-I for further details on the specifications.

TABLE 1

Dep. Var.: Change in Mean Score Across Cohorts

Panel A: CFR (2014a) New York Sample

Panel C: Bacher-Hicks, Kane, Staiger (2016) LAUSD Sample

Effects of Imputing Missing VA: Empirical Results

Panel B: Rothstein (2016) North Carolina Sample
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(1) (2) (3)

Change in Mean VA 0.997 0.991 0.972
(0.024) (0.029) (0.018)

Change in Mean VA 0.138 0.097 0.009
(0.023) (0.028) (0.017)

Notes: This table presents estimates using data that is simulated from a model with school
by year shocks to test scores. Each cell of this table reports estimates from a separate
regression, with standard errors in parentheses. The dependent variable in Panel A is the
change in current scores, while the dependent variable in Panel B is the change in lagged
scores. Column 1 is the baseline specification using in CFR-I. Column 2 reports estimates
where current VA is calculated excluding three calendar years of data. Column 3 includes
school-year fixed effects (there is no variable for subject in our simulation).

TABLE 3

CFR- I 
Baseline

Leave-Three-Out 
VA

Sch.-Year (Subj.) Fixed 
Effects

Panel B. Dependent Variable: D Mean Lagged Score

Panel A. Dependent Variable: D Mean Current Score

Prior Test Score "Placebo" Tests: Simulation Results



(1) (2) (3) (4) (5)

Change in Mean VA (l) 0.957 0.923 0.968 0.950 0.942
Standard Error (0.034) (0.037) (0.069) (0.051) (0.042)

P-value:
Coeff = Baseline [1.000] [0.361] [0.870] [0.890] [0.722]

Change in Mean VA (q) 0.171 0.052 0.031 0.258 -0.023
Standard Error (0.034) (0.036) (0.068) (0.050) (0.043)

P-value:
Coeff = 0 [0.000] [0.145] [0.650] [0.000] [0.596]

Change in VA 0.879 0.865 1.015 0.829

Notes: Each cell in Panels A and B of this table reports estimates from a separate regression, with the coefficient
in the top row, standard error (in parenthesis) in the following row, and p-value [in brackets] in the third row. The
dependent variable in Panel A is the change in mean current scores across cohorts, while the dependent variable
in row 2 is the change in mean lagged scores across cohorts. All regressions in Columns 1 through 4 include
school-year fixed effects. Column 1 is the baseline specification used in CFR-I and Rothstein (2016, Table 2, Col.
1). Column 2 reports 2SLS estimates, instrumenting for the change in mean VA with the changes in mean VA
excluding teachers who switch from the previous grade to the current grade. Column 3 reports 2SLS estimates,
instrumenting for the change in mean VA with the changes in mean VA excluding teachers who switched grades
within the school. Column 4 reports 2SLS estimates, instrumenting for the change in mean VA with the changes in
mean VA from teachers who switched grades within the school. Column 5 replicates 2 including school-year-
subject fixed effects. See notes to Table 4 in CFR-I for further details on these specifications. Panel C reports
predicted values of the coefficient in Panel A under the assumption that a 1 unit increase in prior scores increases
current scores by 0.66, starting from the baseline values in Column 1. See Section II.D for further details on this
panel.

TABLE 4
Prior Test Score "Placebo" Tests: Empirical Results

Baseline No Followers Between-School 
(Excludes Followers)

Within-School
(Includes Followers)

No Followers 
w/ Sch.-Year-

Subj. FE's

Panel A. Dependent Variable: D Mean Current Score

Panel B. Dependent Variable: D Mean Lagged Score

Panel C. Predicted Values of l Assuming y = 0.66 as in Rothstein (2016)



 Estimation Method:
CFR        

Two-Step 
Estimator

Rothstein 
Multivariable 

OLS

Rothstein 
Multivariable 

2SLS

(1) (2) (3)

Teacher Test-Score VA (P) 99.74 75.16 80.28
(1.977) (1.527) (1.131)

Covariate (X) 65.95 54.18
(0.825) (0.852)

TABLE 5

Dependent Variable: Student Earnings ($)

Long-Term Effects of Teacher VA: Simulation Results

Notes: This table reports results from simulated data in which student earnings are a function of
teacher VA and a correlated covariate X. The true effect of teacher VA on student earnings is
$100 and the true effect of the covariate X is $10. Each column reports regression estimates
using a different estimator. Column 1 shows estimates obtained from the two-step estimator
used in CFR-II. Column 2 shows estimates obtained from Rothstein's (2016) multivariable OLS
regression.  Column 3 shows estimates from Rothstein's (2014) 2SLS estimator.


