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Causal Effects of Each County

First paper establishes that neighborhoods matter on average, but it 
does not tell us which places are good or what their characteristics are

Second paper: “The Impacts of Neighborhoods on Intergenerational 
Mobility II: County-Level Estimates”

Estimate the causal effect of each county on children’s earnings

Estimate ~3,000 treatment effects (one per county) instead of one 
average exposure effect as in first paper



Estimating County Fixed Effects

Begin by estimating effect of each county using a fixed effects model 
that is identified using variation in timing of moves between areas

Intuition for identification: suppose children who move from Manhattan 
to Queens at younger ages earn more as adults

Can infer that Queens has positive exposure effects relative to 
Manhattan



Estimate place effects µ=	(µ1,…,µN) using fixed effects for origin and 
destination interacted with exposure time:

Place effects are allowed to vary linearly with parent income rank:

Include origin-by-destination fixed effects to isolate variation in exposure

Estimating County Fixed Effects
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CZ Fixed Effect Estimates for Child’s Income Rank at Age 26
For Children with Parents at 25th Percentile of Income Distribution

Note: Estimates represent annual exposure effects on child’s rank in income distribution at age 26
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Three Objectives

Use fixed effect estimates for three purposes:

1. Quantify the size of place effects: how much do places matter?

2. Construct forecasts that can be used to guide families seeking to 
“move to opportunity”

3. Characterize which types of areas produce better outcomes to 
provide guidance for place-based policies



Objective 1: Magnitude of Place Effects

Estimate signal variance of place effects

To interpret units, note that 1 pctile ~= 3% change in earnings

For children with parents at 25th percentile: 1 SD better county from 
birth à 10% earnings gain

For children with parents at 75th percentile: 1 SD better county from 
birth à 6% earnings gain

Correlation of place effects for p25 and p75 across counties is +0.3

Places that are better for the poor are not worse for the rich



What are the best and worst places to grow up? 

Construct forecasts that minimize mean-squared-error of predicted 
impact for a family moving to a new area

Raw fixed effect estimates have high MSE because of sampling error

Reduce MSE by combining fixed effects (unbiased, but imprecise) 
with permanent resident outcomes (biased, but precise)

Objective 2: Forecasts of Best and Worst Areas
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Causal effect point 
estimates are noisy
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Optimal Forecasts Combining Fixed Effects and Permanent Resident Outcomes
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Optimal Forecasts Combining Fixed Effects and Permanent Resident Outcomes
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Predicted Exposure Effects on Child’s Income Rank at Age 26 by CZ
For Children with Parents at 25th Percentile of Income Distribution
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Predicted Exposure Effects on Child’s Income Level at Age 26 by CZ
For Children with Parents at 25th Percentile of Income Distribution

Note: Estimates represent % change in earnings from growing up from birth 
(i.e. 20 years of childhood exposure) in CZ
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Exposure Effects on Income in the New York CSA
For Children with Parents at 25th Percentile of Income Distribution

Causal Exposure Effects:
Bronx NY: - 10.89%
Bergen NJ: + 13.77%
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Exposure Effects on Income in the New York CSA
For Children with Parents at 75th Percentile of Income Distribution

Causal Exposure Effects:
Bronx NY: - 8.33%
Bergen NJ: + 6.29%
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Exposure Effects on Income in the Boston CSA
For Children with Parents at 25th Percentile of Income Distribution

Causal Exposure Effects:
Suffolk MA: - 6.11 % 
Middlesex MA: + 7.71 %
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Causal Exposure Effects:
Suffolk MA: - 3.64 % 
Middlesex MA: + 0.54 %

Exposure Effects on Income in the Boston CSA
For Children with Parents at 75th Percentile of Income Distribution
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Annual	Exposure	Effects	on	Income	for	Children	in	Low-Income	Families	(p25)
Top	10	and	Bottom	10	Among	the	100	Largest	Counties	in	the	U.S.

Exposure	effects	represent	%	change	in	adult	earnings	from	growing	up	from	birth	(i.e.	20	years	of	exposure)	in	county

Top 10 Counties Bottom 10 Counties

Rank County Impact from 
Birth (%) Rank County Impact from 

Birth (%)

1 Dupage, IL 16.00 91 Wayne, MI -11.39

2 Fairfax, VA 14.98 92 Orange, FL -12.10

3 Snohomish, WA 14.02 93 Cook, IL -12.79

4 Bergen, NJ 13.77 94 Palm Beach, FL -13.01

5 Bucks, PA 12.39 95 Marion, IN -13.09

6 Norfolk, MA 11.47 96 Shelby, TN -13.15

7 Montgomery, PA 9.74 97 Fresno, CA -13.50

8 Montgomery, MD 9.47 98 Hillsborough, FL -13.82

9 King, WA 9.33 99 Baltimore City, MD -13.98

10 Middlesex, NJ 9.13 100 Mecklenburg, NC -14.46



Top	10	and	Bottom	10	Among	the	100	Largest	Counties	in	the	U.S.
Annual	Exposure	Effects	on	Income	for	Children	in	High-Income	Families	(p75)

Exposure	effects	represent	%	change	in	adult	earnings	from	growing	up	from	birth	(i.e.	20	years	of	exposure)	in	county

Top 10 Counties Bottom 10 Counties

Rank County Impact from 
Birth (%) Rank County Impact from 

Birth (%)

1 Fairfax, VA 10.96 91 Hillsborough, FL -7.95

2 Westchester, NY 6.88 92 Bronx, NY -8.33

3 Contra Costa, CA 6.67 93 Broward, FL -9.20

4 Hamilton, OH 6.32 94 Dist. of Columbia, DC -9.68

5 Bergen, NJ 6.29 95 Orange, CA -9.79

6 Gwinnett, GA 6.26 96 San Bernardino, CA -10.14

7 Norfolk, MA 6.23 97 Riverside, CA -10.26

8 Worcester, MA 5.38 98 Los Angeles, CA -10.49

9 Franklin, OH 4.72 99 New York, NY -11.36

10 Kent, MI 4.61 100 Palm Beach, FL -13.00



Male	Children
Annual	Exposure	Effects	on	Income	for	Children	in	Low-Income	Families	(p25)

Top 10 Counties Bottom 10 Counties

Rank County Impact from 
Birth (%) Rank County Impact from 

Birth (%)

1 Bucks, PA 16.82 91 Milwaukee, WI -14.80

2 Bergen, NJ 16.62 92 New Haven, CT -14.96

3 Contra Costa, CA 14.47 93 Bronx, NY -15.21

4 Snohomish, WA 13.92 94 Hillsborough, FL -16.30

5 Norfolk, MA 12.45 95 Palm Beach, FL -16.49

6 Dupage, IL 12.17 96 Fresno, CA -16.80

7 King, WA 11.15 97 Riverside, CA -16.97

8 Ventura, CA 10.90 98 Wayne, MI -17.43

9 Hudson, NJ 10.41 99 Pima, AZ -23.03

10 Fairfax, VA 9.21 100 Baltimore City, MD -27.86

Exposure	effects	represent	%	change	in	adult	earnings	from	growing	up	from	birth	(i.e.	20	years	of	exposure)	in	county



Female	Children
Annual	Exposure	Effects	on	Income	for	Children	in	Low-Income	Families	(p25)

Top 10 Counties Bottom 10 Counties

Rank County Impact from 
Birth (%) Rank County Impact from 

Birth (%)

1 Dupage, IL 18.18 91 Hillsborough, FL -10.18

2 Fairfax, VA 15.10 92 Fulton, GA -11.52

3 Snohomish, WA 14.65 93 Suffolk, MA -11.54

4 Montgomery, MD 13.64 94 Orange, FL -12.02

5 Montgomery, PA 11.58 95 Essex, NJ -12.75

6 King, WA 11.39 96 Cook, IL -12.83

7 Bergen, NJ 11.20 97 Franklin, OH -12.88

8 Salt Lake, UT 10.22 98 Mecklenburg, NC -14.73

9 Contra Costa, CA 9.42 99 New York, NY -14.94

10 Middlesex, NJ 9.38 100 Marion, IN -15.50

Exposure	effects	represent	%	change	in	adult	earnings	from	growing	up	from	birth	(i.e.	20	years	of	exposure)	in	county



Gender	Average	vs.	Pooled	Specification

Top 10 Counties Bottom 10 Counties

Rank County Gender
Avg (%)

Pooled 
(%) Rank County Gender 

Avg (%)
Pooled

(%)

1 Dupage, IL 15.12 16.00 91 Pima, AZ -12.16 -8.93

2 Snohomish, WA 14.35 14.02 92 Bronx, NY -12.30 -10.89

3 Bergen, NJ 14.12 13.77 93 Milwaukee, WI -12.32 -9.92

4 Bucks, PA 13.29 12.39 94 Wayne, MI -12.52 -11.39

5 Contra Costa, CA 12.14 8.83 95 Fresno, CA -12.94 -13.50

6 Fairfax, VA 12.09 14.98 96 Cook, IL -13.35 -12.79

7 King, WA 11.33 9.33 97 Orange, FL -13.46 -12.10

8 Norfolk, MA 10.81 11.47 98 Hillsborough, FL -13.47 -13.82

9 Montgomery, MD 10.49 9.47 99 Mecklenburg, NC -13.81 -14.46

10 Middlesex, NJ 8.61 9.13 100 Baltimore City, MD -17.27 -13.98

Annual	Exposure	Effects	on	Income	for	Children	in	Low-Income	Families	(p25)

Exposure	effects	represent	%	change	in	adult	earnings	from	growing	up	from	birth	(i.e.	20	years	of	exposure)	in	county



Objective 3: Characteristics of Good Areas

Are correlations documented in prior studies driven by causal effects? 

Ex: children who grow up in “ghettos” with concentrated poverty 
have worse outcomes [Massey and Denton 1993, Cutler and Glaeser 1997]

Is growing up in a segregated area actually bad for a child or do 
people who live in segregated areas have worse unobservables?”

Correlate fixed effect estimates with observable characteristics of areas



Step 4: Characteristics of Good Areas

Decompose observed rank for stayers (ypc) into causal and sorting 
components by multiplying annual exposure effect μpc by 20:

Causal component = 20μpc

Sorting component = ypc – 20μpc

Re-scale ypc, causal, and sorting components to percentage change in 
earnings (1 percentile -> 3.1% increase in earnings at p25)

Regress ypc, causal, and sorting components on covariates

Standardize covariates so units represent impact of 1 SD change in 
covariate on percentage impact on earnings
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House Prices

Does it cost more to live in a county that improves children’s outcomes?

Correlation between causal exposure effect and median rent is negative
(-0.4) across CZs

Rural areas produce better outcomes

But, evidence of positive correlation across counties within CZs

Moving to a county that causes a 1% increase in child’s earnings per 
year of exposure on average has $176.8 (s.e. 65.50) higher median rent



But, rents explain less than 2% of variation in county causal effects

Implies that there are many “opportunity bargains”

Opportunity vs. House Prices
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House Prices

Why are causal effects on children not fully capitalized in house prices?

Other disamenities (e.g. longer commute)

Causal effects not fully observed

Suggestive evidence of #2: only the observable components of the causal 
effects are priced

Define observable component as projection of place effect onto observables: 
poverty rate, commute time, single parent share, test scores, and Gini

Define unobservable component as residual from this regression, shrunk to 
adjust for measurement error

Regress median rent on observable and unobservable components

Roughly one-third of the variance is “observable” and two-thirds is not
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House Prices

Main lesson: substantial scope to move to areas that generate greater 
upward mobility for children without paying much more

Especially true in cities with low levels of segregation

In segregated cities, places that generate good outcomes without having 
typical characteristics (better schools, lower poverty rates) provide bargains

Ex: Hudson County, NJ vs. Bronx in New York metro area

Encouraging for housing-voucher policies that seek to help low-income 
families move to better areas



Findings provide support for place-focused approaches to improving 
economic opportunity

1. Substantial scope to help low-income families move to better 
area without paying higher rents

Outcome-based forecasting approach developed here 
provides a practical method to identify such areas

2. Places that have high upward mobility have a common set of 
characteristics, such as less segregation and better schools

Suggests that their successes may be replicable in areas that 
currently offer lower levels of opportunity

Conclusion



Download County-Level Data on Social Mobility in the U.S.
www.equality-of-opportunity.org/data


